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van der Waals interactions in cholesteric liquid crystals
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Microscopic calculations of the pitch of cholesteric liquid crystals are based on a few types of interactions
between molecules: (1) short-range repulsive, (2) direct Coulomb, and (3) long-range van der Waals inter-
actions. Recently, it was shown that first two types cannot be treated in the frame of mean-field approximation.
Here we show that, contrary to common belief, an accurate evaluation of the intermolecular dispersion forces
contributing to chiral ordering requires consideration of biaxial correlations between molecules which are
neglected in the mean-field approximation. We found that in the presence of biaxial correlations chiral inter-
actions depend very weakly on the anisotropy of the local~i.e., atomic! polarizability. Instead, the chiral
interaction between two molecules is dominated by the character of biaxial correlations, the isotropic part of
local polarizability of one molecule, and a chiral parameter of the other molecule, which characterizes the
chiral molecular geometry and is similar to that found previously for steric interactions.

PACS number~s!: 61.30.Cz
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I. INTRODUCTION

It is well known that liquids consisting of long rodlik
molecules give rise to liquid crystalline phases@1#. In the
nematic liquid-crystal phase these elongated molecules
preferentially aligned along a symmetry axis specified by
unit vector n, even though their centers of mass show
long-range order. In this paper, we wish to study the mic
scopic interactions that give rise to the cholesteric liq
crystal ~CLC! phase, in which the local directorn„r ) de-
scribes a macroscopically helical structure with

n~r !5 k̂ cosQx2 ĵ sin Qx, ~1!

where the axis of the helical structure~which is perpendicu-
lar to n! is arbitrarily assigned to thex direction andQ is the
macroscopic chiral wave vector, defined so that a rig
handed structure hasQ positive. In physically realizable sys
tems, the chiral pitch,P52p/Q, is much larger than the
intermolecular separation, in which case this phase, altho
chiral on large length scales, is locally identical to a nema
We, therefore, will refer to this phase as the cholesteric n
atic ~CN! phase. It is known that one gets a CN phase if, a
only if, some~or all! of the constituent molecules are chira
~A chiral molecule is one that cannot be rotated into its m
ror image@2#. For a discussion of chiral molecular symmet
see a recent review@3#.! The terminology CN emphasizes th
fact that a meaningful calculation of the macroscopic ch
wave vectorQ need only be carried out to leading order
the molecular chirality@4#. In particular, this implies tha
long-range biaxial order, which is an inescapable con
quence of chiral ordering~since the chiral wave vecto
breaks the symmetry in the plane perpendicular ton!, need
only be considered if one is dealing with a system that wo
have long-range biaxial order in the absence of chiral in
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actions. In the situation we consider, the chiral wave vec
is a consequence of ‘‘turning on’’ chiral interactions in a
otherwise nematic liquid crystal that has only short-ran
biaxial order.

Up to now no consensus has been reached as to ex
which microscopic interaction between molecules domina
in producing the CLC phase. Among the interactions t
have been invoked are@5#: ~1! long-range attractive disper
sion ~van der Waals! interactions,~2! short-range repulsive
interactions whose origin is in the Pauli principle~also called
steric!, and ~3! direct Coulomb interactions which usuall
take the form of dipole–quadrupole interactions betwe
electrically neutral mesogens. The latter two types can
interpreted as central force interactions between pairs o
oms or mass points on different molecules. Traditionally,
direct Coulomb interactions are ignored and can be a sub
of future investigation. In contrast, the dispersion interact
is not equivalent to a classical two-body interaction. T
distinction between two-body and many-body~i.e., disper-
sion! interactions, is that two-body interactions are know
@6# to give Q50 when the orientation of each molecule
independently averaged over a distribution function that
the cylindrical symmetry of the nematic phase. In oth
words, within mean field theory, two-body interactions mu
give Q50. Thus, for two-body interactions a nonzero val
of Q can only be obtained when biaxial correlations betwe
neighboring nematogens are explicitly taken into acco
@4#. In contrast, from the early calculations of van der Me
et al. @7# and Kats@8# it is clear that dispersion interaction
do give a nonzero value ofQ even within mean-field theory
This has led, it seems, to the belief that for dispersion in
actions it is not necessary to consider the role of orientatio
correlations between molecules. In this paper, we show
this is not the case.

Until recently, the calculations@7,8# have yielded formal
expressions that can hardly be used to obtain order of m
nitude estimates ofQ. The resulting expressions forQ in-
volved molecular polarizabilities, which were not easy
estimate. In addition, the treatment was itself based o
2777 ©2000 The American Physical Society
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2778 PRE 61S. A. ISSAENKO AND A. B. HARRIS
multipole expansion whose use is questionable when app
to elongated nematogenic molecules. To overcome these
jections we@9# recently carried out a numerical evaluation
the cholesteric pitch resulting from van der Waals interm
lecular interactions when, as was customary, biaxial corr
tions were neglected. We used a modification of the mu
pole expansion in which only the transverse coordina
were treated perturbatively. This approach allowed us to t
a system of elongated molecules with intermolecular sep
tion close to that observed in the real cholesteric. In t
treatment, we also introduced a model in which the imp
tant excited states that determine the dispersion interac
werep states localized on each atomic site. It was found t
the cholesteric pitch resulting from this model was usua
much longer than that observed experimentally. A sim
evaluation was done numerically for poly-gamma-benzylL-
glutamate~PBLG! diluted in dioxane@10#. This evaluation
showed that the cholesteric pitch arising from quantum in
actions treated within the mean-field approximation w
about 20 times longer than that found experimentally.

In this paper, on the basis of results obtained for the C
consisting of DNA-like molecules, we claim that, similar
short-range repulsive interactions, the contribution of disp
sion intermolecular forces to the chiral order cannot
evaluated reliably when orientational correlations betwe
molecules are ignored. One illustration of this statemen
provided by a treatment of a CLC consisting of polyme
PBLG diluted in dioxane@10#, where it was shown that a
consideration of intermolecular biaxial correlations can g
the cholesteric pitch comparable to the experimentally
served value. Thus, it is important for understanding ch
properties of PBLG liquid crystals to know the biaxial co
relations, which were traditionally disregarded in treatme
of this CLC @11–13#.

When the dispersion chiral interactions between two m
ecules are considered in the mean field approximation, it
found @7,8# that the resulting effective chiral interactio
could be expressed in terms of polarizabilities characteri
of the molecule as a whole. In particular, this interacti
energy was found to be proportional to the anisotropic p
of polarizability of one molecule and a higher order~third
rank tensor! molecular polarizability, called the gyrotropy
which describes the chiral properties of the other molec
In Ref. @9# it was shown that when the electrons are w
localized on their atomic sites and within thep state model,
the molecular polarizability can be expressed in terms of
local atomic polarizabilities and the molecular gyrotropy c
be expressed in terms of the local atomic polarizabilities
the positions of the atoms within the molecule.

When one goes beyond mean-field theory and takes b
ial correlations into account, the description in terms of lo
atomic properties is again quite convenient. In addition,
this case, it is necessary to consider the detailed behavio
the chiral interaction as a function ofa I , which specifies the
angle through which moleculeI is spun about its long axis
Our study of thea dependence of the interactions leads
two main results. First, thea-dependent part of this interac
tion is, in general, far larger than its average over thea’s. In
this situation, it is obviously important to take account of t
correlations between thea’s of the interacting molecules
Our second result is that although the average of this in
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action over thea’s of the interacting molecules depends o
the anisotropy of the polarizability, thea-dependent part of
this interaction for typical values of the molecular para
eters depends only weakly on the anisotropic part of the lo
polarizability of the molecules. Therefore, we are led to co
sider the case when the local polarizability is isotropic a
consequently that both the anisotropy of the polarizabi
and the gyrotropy vanish. It is then relevant to identify t
parameters that determine the strength of the chiral inter
lecular interaction. As we shall see, the molecular chirality
described, not by the gyrotropy, but rather by a third ra
tensor similar to that encountered in the treatment of st
interactions@4#. The anisotropy of the polarizability~which
appears in the mean-field analysis of chiral interactions! is
now replaced by the anisotropy associated with biaxial c
relations in combination with the isotropic part of the pola
izability. In view of the importance of biaxial correlations w
give, in Appendix C, an analysis of the symmetry of the
two molecule orientational correlation functions in the ful
aligned nematic phase. We use this analysis to project ou
our calculationsa-dependent contributions to the energ
which do not survive averaging over orientational correlat
functions consistent with local nematic symmetry.

Finally, we point out that a quantitative calculation of th
cholesteric pitch of a system of helical molecules also
quires a detailed knowledge of the distribution of the cent
of neighboring molecules with respect to relative displa
ment along the local nematic director as well as the distri
tion of the lengths of constituent molecules. This implies th
there is no universal, one-size fits all, theoretical explana
for the magnitudes of the chiral wave vectorQ.

Briefly, this paper is organized as follows. In the follow
ing section, we will consider the pairwise interaction b
tween molecules leading to the macroscopic chiral tw
This interaction will be treated within second-order perturb
tion theory. As we showed previously@9#, macroscopic twist
can arise from two distinct physical mechanisms: one
which both molecules are excited in the virtual state of tw
molecule system and a second in which only one molecul
excited in the virtual state. The latter type of interaction a
pears important only in special cases since it requires
presence of local dipole moments arranged in the chiral o
on one of the molecules rather than gyrotropy, which is ch
acteristic for a two-molecule term. These cases are treate
Secs. II B and II C, respectively. Finally, in Sec. III we lis
our conclusions and briefly discuss the significance of
findings. The symmetry of the two-molecule orientation
correlation function for a fully aligned nematic is discuss
in Appendix C.

II. EXACT EVALUATION OF CHIRAL QUANTUM
INTERACTIONS

A. Formulation

In this section, we analyze how van der Waals inter
tions give rise to the macroscopic chiral wave vector of ch
lesteric liquid crystals. We assume that each molecule h
small enough polarizability that we need consider only pa
wise Coulomb interactions between molecules, which
treat quantum mechanically. Traditionally, the interacti
potential between two molecules is expanded either with



a

on
a
n
en
ed
m
ng
ca
s
p

e
m
a
ge
a
l
m

gle
ol

r-
o

s

in

ect

n-

s

hat
the

on
hat

b

t

th
led

le
r

PRE 61 2779van der WAALS INTERACTIONS IN CHOLESTERIC . . .
spect to all coordinates of charges on each molecule@14,7,8#
or with respect to only their transverse coordinates with
assumption that molecules have elongated shapes@9,10#. In
our treatment, we will evaluate the potential of interacti
between molecules exactly, that is without making an exp
sion with respect to any coordinates of the charges o
molecule. This approach will require a numerical treatm
of the problem, which in turn will necessitate a detail
model of each molecular constituent of the CLC. For si
plicity, in our treatment we consider only a CLC consisti
of identical chiral molecules, each of which has a heli
shape. We will also assume the molecular wave function
be strongly localized to the individual atoms. This assum
tion is valid in either of two scenarios. The first is if th
bandwidth of the manifold of excited states is small co
pared to their average energy relative to the ground st
The second is if states are strongly localized by inhomo
neity. We will neglect thermal fluctuations assuming th
there is a perfect alignment of the molecules either paralle
or antiparallel to the local nematic directors in the syste
Thus it is necessary to specify a scalar variable,s[61,
which tells which way the molecule points and an an
variable,a, which specifies the angle through which the m
ecule is spun about its long axis.

To carry out the calculations we will refer to three coo
dinate systems. In the space-fixed coordinate system, sh
in Fig. 1, we introduce an axisex which coincides with the
cholesteric wave vectorQ as in Eq.~1!. Also we takeez(R)
to be the axis along which the long axes of the molecule
R are perfectly aligned. The third local axis atR is chosen to
form a right-handed coordinate system. For smallRx , n(Rx)
will be rotated through a small anglec(Rx) from its value at
Rx50. Thus to first order inc we write

ex~R!5ex ,

ey~R!5ey1c~Rx!ez , ~2!

ez~R!5ez2c~Rx!ey ,

FIG. 1. The space fixed axesem in a CN. Hereex is defined to lie
along the cholesteric wave vector. We show the arrangemen
molecules in planes perpendicular toex at Rx50, X, X8. The local
director lies in the plane atX is denotedez(X). The axisey(X) is
such as to form the third member of a right-handed triad. For
plane at X the axis ez(X) is rotated through an anglec(Rx)
5QRx relative toez(0).
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whereem[em(0). Thesecond coordinate system, shown
Fig. 2, is defined by the principal axes@15# ex,I8 , ey,I8 , andez,I8
emblazoned on theI th molecule. Because we assume perf
alignment of the long axes, we have

ez,I8 5s Iez ,

ex,I8 5ex cosa I1ey sina I , ~3!

ey,I8 5s I@ey cosa I2ex sina I #.

Note that rotation about the body axisex8 , takes s I into
2s I and rotation about the body axisey8 takes (s I ,a I) into
(2s I ,a I1p). Finally, one has local axesem,i9 for each atom
i on moleculeI. Using the repeated index summation co
vention, we write

em,i9 5Omn
( i ) en,I8 , ~4!

whereO is an orthogonal matrix and similarly for atomj on
moleculeJ. Components of a vectorr with respect to these
various systems are defined by

r5r mem5r m8 em8 5r m9 em9 . ~5!

We now consider the interaction between two moleculeI
andJ in the CN, where moleculeI is at the origin and mol-
eculeJ is at displacementRIJ[R. Because the twist angle
between neighboring molecules is small, we will assume t
the properties of this system are the same as those of
locally identical nematic system. Within this assumpti
@16#, we refer all coordinates to the space-fixed axes t
rotate slowly as a function ofRx as shown in Fig. 1. Since
the cholesteric wave vectorQ lies along the space-fixedx
axis, the long axis of moleculesJ is rotated with respect to
that of moleculeI by a small anglec(Rx) in theey-ez plane.
The interaction Hamiltonian that arises from the Coulom
interaction between thei th charge on moleculeI denotedqi ,
and its counterpartqj on moleculeJ is given by

of

e

FIG. 2. The transformation of Eq.~3! from the space-fixed to the
molecule-fixed axes,em8 . This molecule has points labeledA, B, C,
andD on one of its sides and on the other side it has points labe
E, F, G, andH, such that rotation by 180° aboutez takes~A,B,C,D!
into ~F,E,H,G!. At the left we show the orientation of the molecu
described bys511 anda and at the right we show the molecula
orientation for a molecule withs521 anda.
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HIJ5(
i PI

(
j PJ

qiqj

uR2r i j u
, ~6!

with r i j 5r i2r j , wherer i is the coordinate of thei th charge
of molecule I relative to the center of this molecule an
similarly for r j . We now expressr j in terms of the space
fixed axes at moleculeJ:

r j5@r j•eb~Rx!#eb~Rx!, ~7!

where the space fixed axes atRx are related to those at th
origin as

eb~Rx!5eb~0!2c~Rx!exabea~0!, ~8!

wheree is the fully antisymmetric tensor, and, to be cons
tent with Eq.~1!, c(Rx)5QRx . Since the system is locally
nematic, we treat the coordinate@r j•eb(Rx)#[r j ,b as in the
untwisted nematic phase. Thus, we write

R2r i j [Di j 5@R2r i j #geg~0!2c~Rx!exabr j ,bea~0!,
~9!

so that

Di j 5uR2r i j u

5@ uR2r i j uc50
2 22$exab~R2r i !a~r j !b%c50c~Rx!

1O~c2!#1/2, ~10!

where the subscriptc50 means that the expression is eva
ated in the absence of cholesteric twist. Throughout the
of this paper this limit will be implicit. After substitution o
Eq. ~10! into Eq.~6! and expansion ofDi j

21 with respect toc
one finds

HIJ5(
i PI

(
j PJ

qiqjF 1

uR2r i j u
1c~Rx!

exab~R2r i !a~r j !b

uR2r i j u3
G

1O~c2!. ~11!

We now consider an evaluation of the interaction ene
between two molecules treatingHIJ via perturbation theory.
In the first-order perturbation theory, the interaction ene
is the ground-state expectation value of the Coulomb po
tial between atoms on different molecules. We will not an
lyze this interaction in the present paper.~This interaction is
equivalent to a classical interaction, which can be treated
described elsewhere@4#!. Here, we obtain the chiral interac
tion from HIJ by evaluating the energy of interaction with
second-order perturbation theory, whereby

EIJ52 ( 8
nI ,nJ

u~HIJ!nI ,nJ ;0,0u2

EnInJ

, ~12!

where the sums are over statesunI& (unJ&) of moleculeI (J)
and the prime indicates exclusion of the term when b
molecules are in their ground state. Here,EnInJ

is the energy
~relative to the ground state! of the state when moleculesI
andJ are in statesunI& andunJ&, respectively. Then with help
-

-
st

y

y
n-
-

as

h

of Eq. ~12! we can write the energy of interaction betwe
two molecules giving the rise to their mutual twist leading
macroscopic chirality:

EIJ522c~Rx! (
i i 8PI

(
j j 8PJ

(
nInJ

qiqi 8qjqj 8
EnInJ

Re$^0uDi j
21unInJ&

3^nInJuexab~R2r i 8!a~r j 8!bDi 8 j 8
23 u0&%, ~13!

where we only kept terms of orderc.
The evaluation of the above expression leads to the c

sideration of two different situations: the first when in th
virtual state $nInJ% both molecules are excited~two-
molecule case! and the second when in the virtual state on
one molecule is excited~one-molecule case!. The application
of the approximation of local wave functions in both limi
allows us to express the sum in Eq.~13! over excited states
of the molecule$nI% in terms of a sum withi 85 i over the
excited states$ni% i 51

Na of each atom. Accordingly, results wil
be expressed in terms of matrix elements within atoms
local complexes@9#. In so doing, it is natural to assume th
the relevant excited state can be reached from the gro
state by matrix elements of the dipole moment operator
the numerical analyses below, we will consider only the co
tributions from the lowestp orbitals of electrons on a mol
ecule.

In order to calculate the macroscopic pitchP from EIJ one
must perform an average over the orientations and rela
positions of the interacting molecules. Thus, we wr
2p/P5h/K2, whereK2 is the Frank twist constanth is the
torque field@4#, which we write as

h52
1

2VQ (
s IsJ

E
0

2p

da IE
0

2p

daJE dR EIJ~a I ,aJ ;R!

3 P̂~a I ,s I ;aJ ,sJ ;R!, ~14!

where P̂ is the density of molecules atR with orientation
specified byaJ andsJ , given that there is a molecule at th
origin with orientation specified bya I and s I . When this
equation is applied to a helical molecule, we may omit r
erence to thes ’s since moleculeI is invariant under change
of sign ofs I . In general, the average of Eq.~14! is a difficult
one to perform. However, there is a number of simplific
tions, which are often made. For instance, within mean fi
theory, one neglects the correlations between the orientat
of the two molecules. Thus, within mean-field theory w
decouple the densityP̂ into the orientational distribution
function pa(a,s) of each molecule

P̂~a I ,s I ;aJ ,sJ ;RIJ!5gpa~a I ,s I !pa~aJ ,sJ! f ~RIJ!,
~15!

whereg is the number of nearest neighbors and the den
of probability for location of moleculeJ, f (RIJ) has most of
its weight at (RIJ)z50 and at the average intermolecul
separation. Also in Eq.~15! the symmetry of the nematic
phase implies thatpa(a I ,s I)5(4p)21 . In what follows the
mean field average of Eq.~14! is denoted bŷ &, so that
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P522pK2 F K EIJ

2QV L gG21

, ~16!

where here and in the following we take the volume p
molecule to beV5LR2, K251027 dyne and the number o
nearest neighbors of a moleculeg56.

The main point of this paper is to discuss the effect on
pitch of relaxing the mean-field constraint on the distributi
function. In that case, we need to know something about
orientational distribution function. A simple ansatz is to a
sume that the position dependence ofP̂ can be decoupled
from its dependence on molecular orientations. This dep
dence will be defined by the orientational distribution fun
tion Pa(a I ,s I ;aJ ,sJ). In the case of purely steric interac
tions it was shown@4# that as long as the nematic order
reasonably well developed, the pitch can be calculated
convoluting the chiral contribution toEIJ with the nematic
contributions toPa . In other words, it suffices to replace th
orientational distribution function by its value when the m
lecular chirality has been turned off. We will invoke th
approximation here. Accordingly, we need to know what
most general form is forPa in a nematic. This question i
addressed in Appendix C, where we show that in a nem
the most general form for the distribution functionPa for
two molecules whose displacement is parallel to the tw
wave vectorQ ~in the limit when the long axes are perfect
aligned! is

Pa~a I ,s I ;aJ ,sJ!5 (
kl mn

@C~R2!kl mn1D~R2!kl mns IsJ#

3~sina I !
k~sinaJ!

l ~cosa I !
m~cosaJ!

n ,

~17!

wherek1l andm1n are even. The constraint thatk1l is
even is a result of assuming all molecules to be identi
while m1n being even is a consequence of nematic symm
try. It follows from these constraints that only that part ofEIJ
which is invariant when the signs of both cosaI and cosaJ are
changed survives the average over a nematic symmetry
tribution functionPa . Accordingly, the assumption of nem
atic symmetry correlations indicates that we should repl
EIJ by its component consistent with local nematic order

EIJ→ 1
2 @EIJ~a I ,s I ;aJ ,sJ!1EIJ~p2a I ,s I ;p2aJ ,sJ!#.

~18!

Finally we remark that, as follows from Appendix C, th
given replacement is redundant when the displacement
tween two molecules isR5(R,0,0) and their orientations ar
identical:a I5a I50. This fact will be used later.

B. Two-molecule term

In the limit when both molecules are excited in the virtu
state of two molecules one finds the following contributi
into Eq. ~13!
r

e
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-
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e
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t

l,
-

is-

e

e-

l

EIJ
(2)522c~Rx! e4(

i j
(
mn

Eim; j n
21 ^0uDi j

21u i ,m; j ,n&

3^ i ,m; j ,nuexab~R2r i !a~r j !bDi j
23u0&, ~19!

wherem andn label excitedp states of atomsi andj, respec-
tively. ~These states are assumed to be the real statespx9 ,
py9 , andpz9 referred to the local atomic axes.! For simplic-
ity, we will always assume thatEim; j n is independent of lo-
cations of i and j atomic sites on the corresponding mo
ecules. The above matrix elements can be expressed as

^0uF~R,r i ,r j !u i ,m; j ,n&

5^ i ,muDr i ,m9 u0&^ j ,nuDr j ,n9 u0&

3
]2

]r i ,m9 ]r j ,n9
F~R,r i ,r j !ur i5 r̄ i , r j 5 r̄ j

), ~20!

whereDr i defines the location ofi electron with respect to
the center of thei th atom on theI molecule,r̄ i is the expec-
tation value ofr i in the ground state, i.e., the center of th
atom associated with chargei. In Appendix A, we derive the
expression forEIJ

(2) as a function of the orientations of th
two interacting molecules.

For the purpose of numerical evaluation of the given
teraction we introduce helical molecules identical to tho
considered in Ref.@9# where, unless otherwise specified, t
length of a moleculeL, the molecule wave numberq, the
radius of the molecular helixa and other parameters ar
given in Table I. The position components of thei th atom in
the molecule-fixed coordinate system are

zi85si , xi85acos~qsi !, yi85asin~qsi !, ~21!

where the si5@2 1
2 1( i 21)/(Na21)#L for i 51,2, . . . ,

Na , whereNa is the number of atoms in a molecule. Wit
appropriate relabeling, the space-fixed locations of the ato
may be taken to be

xi5acos~qzi1a I !, yi5asin~qzi1a I !,

zi /L52 1
2 1~ i 21!/~Na21!. ~22!

This result displays explicitly the symmetry of the helix wi
respect tos I→2s I corresponding to the twofold rotatio
axis. ~The orientational distribution functions are thus ind
pendent of thes’s.! The locally defined principal axes for th
i th atom are chosen in the way shown in Fig. 3. It is con
nient to write them as

ex95ex cos~qzi1a I !1ey sin~qzi1a I ! ,

ey952exc sin~qzi1a I !1ezc cos~qzi1a I !ey2caq,

TABLE I. ‘‘Default’’ values of parameters used in the numer
cal evaluations. Only values used, which differ from those listed
this table will be given.

R L q a Na E aa d h K2

20 Å 200 Å 0.4 Å21 7.5 Å 200 8 eV 1 Å 0.2 0 1027 dyne
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ez952excaq sin~qzi1a I !1ezcaq cos~qzi1a I !ey1c ,
~23!

wherec25@11(aq)2)] 21 . Here,ez9 is the tangent vector to
the helix, ex9 is a unit vector along the radius of curvatur
and ey9 is the unit vector along the binormal or the thi
orthogonal direction.

We will set the matrix elementŝ i ,muDr i ,m9 u0& and
^ j ,nuDr j ,n9 u0& equal toaa51 Å and characterize the aniso
ropy of the atomic polarizability through the relations

Ex9 /E511
1

3
d1h, Ey9 /E511

1

3
d2h,

Ez9 /E512
2

3
d, ~24!

whereE is the average excitation energy andx9, y9, z9 label
the local principal axes of the atom. Within our assumpt
of constant matrix elements the parametersd andh charac-
terize the anisotropy of the excitation energy and throug
the anisotropy of the atomic polarizability. For a molecu
with an anisotropic polarizability we will set:E58 eV,
d50.2, andh50, so that the local polarizability tensor has
largest component along the tangent to the helix, as
would expect physically.

First, we evaluate the dispersion interaction in the me
field approximation with given Frank twist constantK2 . Af-
ter finding EIJ

(2)/Q from Appendix A we will average this
ratio with respect to positions of nearest neighbors ofI mol-
ecule, which are located at random on its equatorial circu
ference of radiusR, as described in connection with Eq.~16!.
As mentioned, we neglect any correlations between posit
of molecules and independently spin each of them. We
mark here that numerically spinning of the molecules
small separations should be performed very accurately,
over a large number of molecular orientationsa in its equa-
torial plane. In evaluatingEIJ

(2)/Q, we first consider the cas

FIG. 3. Local atomic coordinate system, defined by the u
vectorsem9 , showing that the local excitedp states define the orien
tation of the local axes. Here,ez9 is the unit vector tangent to th
helix, the unit normal,ex9 , lies along the radius of curvature, and th
binormal unit vectorey9 is the third member of the triad of mutuall
perpendicular unit vectors.
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of isotropic polarizability,d5h50. For this case, it is known
that within the multipole expansion@7,8# or modified multi-
pole expansion@9#, mean-field theory giveŝEIJ&50. How-
ever, we expect that this result does not depend on the
lidity of such expansions. Indeed, in confirmation of th
idea, our numerical work gavêEIJ

(2)&50. Second, in Fig. 4
we show how the mean-field result for the cholesteric pi
depends on the intermolecular separation ford50.2 and
h50. It follows that the modified multipole expansion of th
interaction potential used in Ref.@9# is not accurate at very
small intermolecular distances. This expansion works w
down to a separation'35 Å, which corresponds to;15% of
the molecule volume densityj approximately given by
(2pa2)/(A3R2). We now discuss how the cholesteric pitc
;2mm we found atR518 Å ~volume density'60%! com-
pares with what one would expect in view of experimen
One must realize that at this separation the distance betw
closest interacting atoms is only 3 Å, that our molecules
very chiral instead of having only a few chiral centers, th
atomic polarizability we used is rather high and the Fra
twist constant is rather low. Thus, our result should be co
pared to the minimum observed pitch that is found to be
most a fraction of a micron@1#. So we expect that the dis
persion interaction between molecules treated within
mean-field approximation can make a significant contrib
tion to the chiral order only in the very special cases.

Now let us estimate the role of biaxial correlations for t
dispersion forces contributing into the chiral intermolecu
interactions. For this purpose, we will evaluate the energy
chiral interactionEIJ

(2) as a function ofa I andaJ for the case
whenR is in the same direction asQ, which we indicate by
the notationR↑↑Q. Figures 5~a! and 5~b! show the value of
EIJ

(2)/2Q and its component, which is consistent with loc
nematic order@as defined in Eq.~18!#, respectively. On each
plot the I th molecule has four different equatorial orient
tions given bya I50o, 90°, 180°, and 270°, while theJth

it

FIG. 4. Cholesteric pitch as a function of separationR between
helical molecules. Results are for the parameter values of Tab
The solid line is from an exact numerical evaluation ofEIJ

(2) from
the present paper, as described in Appendix A. The dashed lin
from Ref. @9# and is based on the analytic expansion in powers
transverse coordinates.
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molecule is rotated through an angleaJ e @0°, 360°#. ~Note
that the presence of local peaks is defined by the detail
the molecule structure. As the density of atomsr or separa-
tion between molecules increases these peaks are smo
out!. We see that at small intermolecular separationEIJ

(2) is
dominated by its component consistent with local nema
order, though, as follows from Appendix V, this dominan
disappears as the separation between molecules incre
and so symmetrization defined by Eq.~18! becomes neces
sary. In Fig. 5, we observe that thea-dependent contribution
to EIJ

(2)/(2Q) has an amplitude of about 0.5 eV Å . If this
energy is independently averaged overa I andaJ , as done in
mean-field theory, the result would be 231024 eV Å corre-
sponding to the cholesteric pitch'14 mm. In other words,
the angular dependent part of the interaction energy is a

FIG. 5. The energy of interactionEIJ
(2)/2Q @panel ~a!# and its

component consistent with local nematic order@panel~b!# as a func-
tion of the equatorial rotation by angleaJ of the moleculeJ at
different angles a I of molecule I: a I150°, a I2590°, a I3

5180°,a I45270°, where the index ofa corresponds to the num
ber of the curve, andR↑↑Q. Each graph has two indistinguishab
curves representing interaction between molecules with anisotr
and isotropic polarizabilities, that is whend50.2, h50, and
d5h50, respectively. The rest of parameter values are as
Table I.
of

hed

c

ses

ut

three orders of magnitude larger than its average obtaine
spinning both molecules uniformly over all values ofa. This
being the case, even small departures from a uniform dis
bution can have a profound effect on the calculated value
the macroscopic pitch. Clearly, we expect correlations
tween the orientations of adjacent molecules will be reflec
by nonuniformity in the distribution ofa values. Thus, we
arrive at the situation that is similar to the one with cent
force interaction between atoms on two molecules where
the system to be chiral one has to invoke the intermolec
biaxial correlations. For dispersion forces even though
obtain nonzero chiral interactions within the mean-field a
proximation, the presence of biaxial correlations will i
crease them significantly. Thus, we conclude that biaxial c
relations should always be taken into account.

In Fig. 5, we plot results for two cases, one in which loc
polarizability of a molecule is anisotropic~d50.2,h50! and
another for which the polarizability is isotropic~d50,h50!.
Within the resolution of this figure one cannot distingui
between these two results. In contrast to the results of
der Meer and others@7–9# derived forEIJ

(2)/2Q in the mean-
field approximation, we find that the orientational depe
dence ofEIJ

(2) is nearly independent of the anisotropic part
the local polarizability of a molecule in the presence
strong biaxial correlations.~From the analysis of Appendix
VII, one can deduce that this statement cannot remain
whena!R. Although in practical cases this limit is probab
not realized.!

The fact that we can get a finite pitch even when t
polarizability is isotropic, raises a question as to what para
eters set the scale for this interaction energy. As discusse
Ref. @3#, the scale for the chiral energy of interaction is set
the product of a chiral parameter of one molecule times so
achiral property, usually an anisotropy, of the second m
ecule. Within the mean field treatment of interactions
which E(2) is averaged overa’s, it is known @7–9# that E(2)

is proportional to the product of the molecular gyrotro
~which characterizes the molecular chirality in this case! and
the anisotropy of the polarizability. However, since the
parameters are both zero whend5h50, the a-dependent
twist energy shown in Fig. 5 must be scaled by some diff
ent parameters. In order to identify appropriate paramet
we present an analysis in Appendix V for the cased5h50.
We find that now the chirality of a molecule is characteriz
by the third-rank tensor component,( ixi8yi8zi8 , where these
coordinates are taken relative to principal axes@15# of the
molecule. Such a result is not surprising, because when
polarizability is isotropic, we are dealing with interaction
that are not very different from steric interactions where j
this type of chiral parameter has been shown to be relev
@4,3#. The quantity analogous to the anisotropy of the pol
izability is harder to identify unambiguously. Clearly, we a
invoking anisotropy due to biaxial correlations. Also, the r
sult is proportional to the magnitude of the isotropic part
the polarizability. So here these two factors, in combinati
play the role that the anisotropy of the polarizability plays
the mean field result.

We should note an unexpected result shown by Fig. 5
corroborated by the analytic analysis given in Appendix
for the limit a!R: even in the largeL limit the energyEIJ

(2)

is not simply a function of (a12a2). This energy contains

ic

in
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2784 PRE 61S. A. ISSAENKO AND A. B. HARRIS
terms proportional to cos(a11a2) and to cos(2a1)
1cos(2a2). The appearance of such terms show that no m
ter how largeL is, end effects remain important.

Next we study the dependence of the chiral energy on
length L of the molecules. Figure 6 reveals the oscillato
behavior ofEIJ

(2)/2QL versus the lengthL of identical mol-
ecules for two values of a molecule wave number: 0.4 a
1 Å21 when their orientations are given by anglesa I5aJ
50 andR5(R,0,0). The oscillations with the period pro
portional to the molecular pitch reflect end effects and
helical nature of the constituent molecules, as is analyze
Appendix D. Figure 6 suggests thatEIJ

(2) would have an os-
cillatory dependence on the relative displacementRz be-
tween two molecules along their long axis. To confirm th
we evaluated this energy as a function ofRz in Fig. 7 for the
special case whena I5aJ50, R'5(R',0,0), the molecule
wave numberq51 Å21, and both molecules have th
lengths 197 or 200.8 Å. It follows that consideration of t
distribution function of the displacementRz will reduce the
effect of oscillations inEIJ

(2) with respect to the lengths o
two molecules. We remark that these results suggest th
one constructs a system in which, to high accuracy, the c
stituent molecules all have the same length,L, then varyingL
may cause a change of the sign of the torque field@17#.

To study the role of orientational correlations betwe
molecules, we construct the torque field@4#, h of the CLC as
given in Eq.~14!. In evaluatingh we will assume that the
molecule at the origin hasg neighbors at a displacement wit
z-component zero and magnitudeR' , but with x andy com-
ponents random in direction. We estimate the effect of bi
ial correlations by considering a few possible situations
the biaxial correlations between molecules:

~1! First we suppose that there is long-range biaxial ord
so that locally each molecule is perfectly oriented in its eq
torial plane at fixed anglesa I5aJ50. Then the torque field
is given by

FIG. 6. The energy of chiral interactionEIJ
(2)/2QL between two

moleculesI and J (R↑↑Q) versus their molecular lengthL when
aJ5a I50 and the other parameters are in Table I, except forq and
r. The solid curve represents the two molecules with the w
numberq51 Å21 and linear density of atomsr52.5 Å21 while
the dashed curve represents the two molecules withq50.4 andr
51.0 Å21 .
t-
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h52
g

4pVQE
0

2p

df EIJ~0,0;R'cosf,R'sinf,0!.

~25!

~2! Second, we assume that although there is no lo
range biaxial order, there are strong pairwise biaxial corre
tions between molecules, which forces two molecules
have the same orientationrelative toR' while the rest of the
molecules are ignored. Equation~14! can be written as

h52
1

4pVQE
0

2p

df EIJ~f,f1D;R'cosf,R'sinf,0!,

~26!

where, for this case,D50. Thus, here both molecules hav
their bodyx-axis parallel toR' .

~3! Finally, we consider strong pairwise biaxial correl
tions ~as in case 2, above! such that Eq.~26! holds with
D5p/2. In this case the bodyx axis of one molecule is par
allel to R' and that of the other is perpendicular toR' .

The results for the torque field and cholesteric pitch
functions of average separation between molecules appea
in each of the above situations are depicted in Fig. 8. T
graphs shown there represent the torque field of a C
formed by chiral molecules with local anisotropic polari
ability defined byd50.2 andh50. As expected, this torque
field is indistinguishable from that of a CLC formed by mo
ecules identical except with isotropic polarizability~d5h
50!. The corresponding cholesteric pitch is shown when
Frank twist constant is equal to 1027 dyne. From Fig. 8, it
may be seen that as the correlations among molecules
crease, the cholesteric pitch significantly decreases. In a

e

FIG. 7. The energy of chiral interactionEIJ
(2)/2QL between two

moleculesI andJ (R'↑↑Q) versus displacementRz of the center of
J molecule along its local nematic director whenaJ5a I50. The
solid curve corresponds to the system with molecules of the len
200.8 Å while the dotted curve is for one with molecular leng
197.0 Å. In both cases, the molecule wave number isq51 Å21 and
the linear density of atoms isr52.5 Å21, R'520 Å, and the other
parameters are as in Table I.
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PRE 61 2785van der WAALS INTERACTIONS IN CHOLESTERIC . . .
tion, we see that the chiral interaction is very sensitive to
details of the mutual biaxial orientations of molecules and,
a consequence, their knowledge is essential for accu
treatment of the problem.

FIG. 8. The torque fieldh as a function of the average intermo
lecular distanceR in the cases, discussed in the text, when~1! there
is long-range biaxial order witha50 for all molecules,~2! there are
strong pairwise biaxial correlations andaJ5a I5f, ~3! there are
strong pairwise biaxial correlations between molecules andaJ

5a I1p/25f. Each plot represents two indistinguishable curv
for the two–molecule terms: one ford50.2,h50, and the other for
d50,h50. The other parameters are as in Table I.
e
s
te

C. One-molecule term

As was shown in Ref.@9# a new type of interaction arise
if only one molecule is excited in the virtual state of tw
molecule system. In this case we derive the contribution
the energy of chiral interaction given by Eq.~13!:

EIJ
(1)522c~Rx!e

2F (
i i 8PI

(
j PJ

(
n

qiqi 8z^ j ,nuDr j ,nu0& z2En
21

3H ]Di j
21

]r j ,n9

]@exab~R2r i 8!a~r j !bDi 8 j
23

#

]r j ,n9 J
r i5 r̄ i ,r i 85 r̄ i 8

1F~ I⇔J!G , ~27!

where F(I⇔J) designates the corresponding term wh
moleculeI is excited and moleculeJ is in its ground state,
and the summation overi ( i 8) includes both the charges o
the electrons and the nuclei, whose positions are taken in
ground state. The sum over both signs of charge within
atom leads to the replacement

qi→di•¹ i , ~28!

wheredi is the dipole moment of atomi and on the right-
hand side of this equation the indexi now labels atoms rathe
than individual charges. Thus,

EIJ
(1)522c~Rx!e

2F(
i i 8 j

(
mm8n

z^ j ,nuDr j ,nu0& z2En
21di ,mdi 8,m8

3H ]2Di j
21

]r j ,n9 ]r i ,m9

]2@exab~R2r i 8!a~r j !bDi 8, j
23

#

]r j ,n9 ]r i 8,m8
9 J

r i5 r̄ i ,r i 85 r̄ i 8

1F~ I⇔J!G . ~29!

To estimate these chiral interactions between molecu
we again consider our model helical molecule. But now
attribute the local dipole moments of constant values to e
molecule and arrange them consistent with the local sym
try:

dx5s I@dx9cos~qs1a!2cdy9sin~qs1a!

2caqdz9sin~qs1a!#,
~30!

dy5s I@dx9sin~qs1a!1cdy9cos~qs1a!

1caqdz9cos~qs1a!#,

dz5s I@2caqdy91cdz9#.

The detailed expression forEIJ
(1) is given in Appendix A.

Note that becauseE(1) involves two dipole moments on th
same molecule, it does not depend on how the dipoles

s
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2786 PRE 61S. A. ISSAENKO AND A. B. HARRIS
different molecules are correlated. We pick the macrosco
and microscopic parameters of the system identical to th
used in Sec. II B with the number of local dipole momen
on each molecule equal to the number of atoms :Nd5Na
5200, and the values of dipole momentsdx95ed, dy95dz9
50.

First, similarly to the previous section, we will numer
cally evaluate the magnitude of the macroscopic pit
within the scope of the mean field approximation. If mo
ecules are spun independently then it turns out that at h
volumetric densityj'50% (R520 Å! the macroscopic pitch
is P50.13 (aa /d)2 mm. The resulting pitch is small enoug
to be relevant. However, as for the two–molecule term,
presence of biaxial correlations between molecules need
be evaluated. Fig. 9 shows the one–molecule te
EIJ

(1)(aa /d)2/(2Q) and its component consistent with loc
nematic symmetry of CN, as defined by Eq.~18!. The two
moleculesI andJ have locations such thatR↑↑Q and theJth
molecule is rotated through the angleaJP@0o, 360o# for four
fixed orientations of theI th molecule. As usual, we plot two
curves: one for the case when interacting molecules h
anisotropic polarizability given byd50.2,h50 and the other
when the molecules are isotropic withd5h50. We observe
that at separation 20 Å there is a noticeable difference
tween two curves, which indicates a strong chiral interact
in the mean-field approximation leading to a small chol
teric pitch. Nevertheless, the part of the energy of interac
that disappears when two molecules are independently s
has dominant contribution, which quickly becomes ov
whelming as the intermolecular separation increases.
last statement is illustrated by Fig. 10, which reveals
one–molecule termEIJ

(1)(aa /d)2/2Q with d50.2, h50 and
d5h50 versus separationR when R↑↑Q and a I5aJ50.
There the difference between two curves quickly decrea
as separation growths. Accordingly, one expects that di
gard of biaxial correlations between molecules leads t
significant overestimation of resulting cholesteric pitch.
follows that the anisotropy of the molecular polarizabili
and chirality of the dipole arrangement can be used in v
rough estimation of the strength of chiral interaction at ve
small separation between molecules. As separation incre
the effective interaction becomes dominated by the isotro
part of the polarizability of one molecule, the chirality of th
arrangement of the dipoles on the other and the biaxial
relations between given molecules.

Similar to two-molecule termEIJ
(1)/2QL undergoes oscil-

lations @10# as the length of each molecule is varied. Th
underlines the necessity of accurate knowledge of the en
EIJ

(1) versus the relative displacementRz between molecules
Finally we point out that the cholesteric pitch rising fro

one–molecule type of interaction is proportional
(aa /d)2 (Na /Nd)2 . Because both ratios usually tend to
very small @in the above analysis we chose (Na /Nd)51],
we conclude that the considered interaction is signific
only in special cases and usually can be neglected.

III. CONCLUSION

Here we record our conclusions and put our work into
context of current research.

~1! For CLC consisting of chiral molecules of helic
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shape~patterned after DNA! we found that the magnitude o
cholesteric pitchP rising from dispersion interactions be
tween molecules evaluated within the mean-field approxim
tion ~in which biaxial correlations are neglected! but without
any type of multipole expansion~as used heretofore! is
shorter than found previously, but still is significantly long
than we expect from experimental data.

~2! Going beyond the mean-field approximation, we an
lyzed the effect of intermolecular biaxial correlations. It w
found that, in contrast to the common belief, these corre
tions play a dominant role in the evaluation of the pitchP
arising from van der Waals interactions. In fact, the prese
of biaxial correlations may lead to an increase in the ch

FIG. 9. The energy of interactionEIJ
(1)(aa /d)2/2Q @panel ~a!#

and its component consistent with local nematic order@panel~b!# as
a function of the equatorial rotationaJ of the moleculeJ at different
angles a I of molecule I: a I150°, a I2590°, a I35180°,a I4

5270°, where the index ofa corresponds to the number of th
curve, andR↑↑Q. In panel~b! for clarity only graphs 1 and 2 are
shown, the graphs 3 and 4 can be reconstructed by translation o
graphs 1 and 2 by the angleaJ5180°, respectively. Parameter
except ford, are taken as in Table I. Each graph has two para
curves corresponding to the interaction of molecules with an
tropic polarizability~thick line!: d50.2,h50, and isotropic polariz-
ability ~thin line!: d50,h50.
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PRE 61 2787van der WAALS INTERACTIONS IN CHOLESTERIC . . .
interaction by a few orders of magnitude in comparison to
effective interaction considered within the mean field a
proximation.

~3! In the presence of biaxial correlations we also fou
that for typical molecular parameters~in which the transverse
dimension of the molecule is not very small compared to
intermolecular separation! the chiral interaction betwee
molecules depends only very weakly on the anisotropic p
of the molecular polarizability. This result contrasts with t
known @7–9# fact that the chiral interaction when biaxia
correlations are neglected is proportional to product of
isotropy of the polarizability and the gyrotropy~which itself
requires an anisotropic polarizability!. In the presence of bi-
axial correlations the pitchP is determined by the chira
geometry of the molecules~similarly to the case of steric
interactions@4#! and the combined effect of biaxial correla
tions and the isotropic part of the polarizability.

~4! We also gave~in Appendix C! an explicit construction
of the allowed form of the two-particle orientational distr
bution function for achiral molecules in a fully aligne
uniaxial nematic. This analysis pinpoints the types of cor
lations that are allowed in the limit when molecular chiral
is ‘‘turned off.’’ We suggest that it is useful to eliminat
from consideration terms in the interaction energy, which
not survive the average over the nematic symmetry distr
tion function, as we did in the results shown in Figs. 5 and
Since it now seems that both steric and quantum interact
are crucially affected by biaxial correlations, we hope th
these correlationsin nematicswill be studied by simulation
techniques.

~5! Our calculations can potentially be generalized in s
eral directions. For instance, our analysis can be applied
liquid crystal containing a mixture of chiral and achiral mo
ecules. In addition, one can apply the approach used he
consider real chiral systems as was done elsewhere@10# for a
CLC consisting of PBLG diluted in dioxane. We hope th
the current work will stimulate numerical simulations
CLC’s with inclusion of van der Waals interactions.

FIG. 10. The one–molecule termEIJ
(1)(aa /d)2/2Q whenR↑↑Q

and aJ5a I50. The solid and dashed curves represent the ca
whend50.2, h50 andd5h50, respectively. Other parameters a
as in Table I.
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APPENDIX A: EXACT CHIRAL TERMS

To evaluate Eq.~19! we need matrix elements of tw
quantities. These are

F (1)[
1

uDi j u
5

1

uR2r i j u
~A1!

and

F (2)[exab@~R2r i !•ea#@r j•eb#Di j
23. ~A2!

We use

^0,0uF~R,r i ,r j !u im, j n&

5^0u~Dr i•em,i9 !u im&^0u~Dr j•en, j9 !u j n&~“ i•em,i9 !

3~“ j•en, j9 !F~R,r i ,r j !

5aa
2~“ i•em,i9 !~“ j•en, j9 !F~R,r i ,r j !

[aa
2^Fmn; i j &. ~A3!

In this notation

EIJ
(2)522c~Rx!aa

4e4(
i j

(
n,m

^Fmn; i j
(1) &^Fmn; i j

(2) &~Em1En!21.

~A4!

Then

^Fmn; i j
(1) &5@em,i9 •“ i #@en, j9 •“ j #

3
1

@R21r i
21r j

222R•r i12R•r j22r i•r j #
1/2

52@em,i9 •“ i #@en, j9 •~R2r i j !#Di j
23

5Di j
23em,i9 •en, j9 23Di j

25@~R2r i j !•en, j9 #

3@~R2r i j !•em,i9 #. ~A5!

Next,

^Fmn; i j
(2) &5@em,i9 •“ i #@en, j9 •“ j #$Di j

23exab@~R2r i !•ea#

3@r j•eb#%

5@em,i9 •“ i #Di j
23exab@~R2r i !•ea#$en, j9 •eb13Di j

22

3@r j•eb#@en, j9 •~r i j 2R!#%. ~A6!

Thus

^Fmn; i j
(2) &5Di j

23exab$2@em,i9 •ea#@en, j9 •eb#13Di j
22@em,i9 •ea#

3@r j•eb#@en, j9 •~R2r i j !#13Di j
22@~R2r i !•ea#

3@r j•eb#@en, j9 •em,i9 #13Di j
22@~R2r i !•ea#@en, j9 •eb#

3@~R2r i j !•em,i9 !#215Di j
24@~R2r i !•ea#@r j•eb#

3@~R2r i j !•en, j9 #@~R2r i j !•em,i9 !]}. ~A7!

es



ex
n
q

en

th

sy

le
th

ol-
er

e

nes,

ave

a-
ed

uate
-

oth

2788 PRE 61S. A. ISSAENKO AND A. B. HARRIS
For the helical molecule we may evaluate the above
pressions using the explicit relations for the atomic positio
given in Eq.~22! and the local coordinate axes given in E
~23!. In the notation of Eq.~A3!, we have

EIJ
(1)522c~Rx!e

2Faa
2(

i i 8 j
(

mm8n

dim9 di 8m8
9 Fmn; i j

(1) Fm8n; i 8 j
(2) En

21

1F~ I⇔J!G , ~A8!

where F(I⇔J) designates the corresponding term wh
moleculeI is excited and moleculeJ is in its ground state.

APPENDIX B: ISOTROPIC ATOMIC POLARIZABILITY

In this appendix, we analyze the chiral energy when
atomic polarizability is isotropic, so thatEn5E. Then,

EIJ
(2)5c~Rx!e

4aa
4 E21(

i j
(
mn

~@“ i•em,i9 #@“ j•en, j9 #Di j
21!

3exab$@“ i•en,i9 #@“ j•em, j9 #@~R2r i !•ea#@r j•eb#Di j
23%.

~B1!

This can now be evaluated in the space-fixed coordinate
tem: where, for simplicity, we setR5Rex :

EIJ
(2)5c~Rx!e

4aa
4E21(

i j
(
mn

~¹ i ,m¹ j ,nDi j
21!

3~¹ i ,n¹ j ,m@yjzi2yizj #Di j
23!

[18c~Rx!e
4aa

4E21T. ~B2!

We have~still in space-fixed coordinates!

T5 1
18(

i j
(
mn

Di j
212 @23Di j ,mDi j ,n1dmnDi j

2 #

3@215Di j ,mDi j ,n~yizj2yjzi !2~3dmzyj

23dmyzj !Di j ,nDi j
2 1~3dnyzi23dnzyi !Di j ,mDi j

2

1~dmzdny2dmydnz!#

5(
i j

Di j
28~yjzi2yizj !, ~B3!

whereDi j
2 5(R2xi j )

21yi j
2 1zi j

2 and

xi5xi8cosa I2s I yi8sina I ,

yi5xi8sina I1s I yi8cosa I , ~B4!

zi5s Izi8 .

First, we analyze this quantity for an arbitrary molecu
SinceT depends on the orientations of the two molecules,
pitch is determined by the average ofT over orientations. So
we consider
-
s
.

e

s-

.
e

^EIJ
(2)&}^T&[ (

s IsJ

E da IE daJT~a Is I ;aJsJ!

3P~a I ,s I ;aJ ,sJ!. ~B5!

Following the type of argument used in Ref.@4# it can be
shown that this expression does indeed vanish when no m
ecules are chiral. It is interesting to look at the lowest ord
terms in the expansion of̂T& in powers of the transvers
coordinates,xi , yi , xj , and yj . The leading term in this
expansion is found by settingDi j

2 5R21zi j
2 . Then the first-

order contribution toT is

T(1)~a Is I ;aJ ,sJ!5A1@s IsinaJ2sJsina I !1A2@sJsinaJ

2s Isina I !1A3s IsJ~cosaJ2cosa I !

1A4~cosaJ2cosa I !, ~B6!

where Am5( i j f i j
(m)L i j

24 , where L i j 5(R21z8 i
21z8 j

2)2

24z8 i
2z8 j

2 , and

f i j
(1)5zi8xj8@~R21z8 i

21z8 j
2!4124z8 i

2z8 j
2~R21z8 i

21z8 j
2!2

116z8 i
4z8 j

4#,

f i j
(2)58z8 i

2xj8zj8~R21z8 i
21z8 j

2!@~R21z8 i
21z8 j

2!214z8 i
2z8 j

2#,

~B7!

f i j
(3)5zi8yj8@~R21z8 i

21z8 j
2!4124z8 i

2z8 j
2~R21z8 i

21z8 j
2!2

116z8 i
4z8 j

4#,

f i j
(4)58z8 i

2yj8zj8~R21z8 i
21z8 j

2!@~R21z8 i
21z8 j

2!214z8 i
2z8 j

2#.

As discussed in Appendix C, the distribution functionP for
nematics involves only net even powers of sines and cosi
so that, a nonzero result for^T& can only result if chiral
contributions toP are included. Actually, this condition is
required, because it is clear that achiral molecules can h
nonzero values of thef ’s. Traditionally, no consideration is
given to the role of chiral biaxial correlations as a mech
nism for cholesteric pitch, although these must be includ
for a fully consistent calculation@4#.

At second order in the transverse coordinates we eval
T with Di j

2 5R222Rxi j 1zi j
2 . Thereby, we find a second

order contribution toT of

T(2)~a I ,s I ;aJ ,sJ!5B1~s!cosa IcosaJ1B2~s!sina IsinaJ

1B3@cos~2a I !1cos~2aJ!#1•••,

~B8!

where••• indicates terms that change sign when either b
sina’s change sign or when both cosa’s change sign.@These
terms do not survive the average in Eq.~B5! when P has
nematic symmetry.# Also in Eq. ~B8! s[s IsJ and

B1~s!516R(
i j

xi8zi8yj8sD0
210,
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B2~s!5216R(
i j

xi8yj8zj8D0
210, ~B9!

B3~s!528R(
i j

xi8yi8zj8sD0
210,

whereD0
25R21zi8

21zj8
222szi8zj8 . Note that these quanti

ties which do survive the average of Eq.~B5! must vanish
for achiral molecules.~Because of our choice of principa
axes@15#, if a molecule is achiral, it has a mirror plane pe
pendicular to one of the principal axes directions.! Generi-
cally, the nonvanishing of one or more sums in Eq.~B9! is
equivalent to the nonvanishing of( ixi8yi8zi8 . For instance,
for the ‘‘twisted H’’ molecule invoked in Refs.@4# and @3#
one sees that the three two-fold rotation axes ensure
B1(s)5B2(s)50, butB3(s) is nonzero and is given by

B3~s!528R(
i j

L i j
25xi8yi8zi8zj8

2@10~R21zi8
21zj8

2!4

180~R21zi8
21zj8

2!2zi8
2zj8

2132zi8
4zj8

4#. ~B10!

One sees the appearance of the quantityxi8yi8zi8 , which is
characteristic of a chiral molecule@4#.

For the helical molecule, we have

T512ar2E
2L/2

L/2

dzE
2L/2

L/2

dz8D28@sin~qz1a I !z8

2sin~qz81aJ!z#, ~B11!

wherer is the density of atoms (r5Na /L) and

D25R222Ra@cos~qz1a I !2cos~qz81aJ!#12a2

22a2cos~qz2qz81a I2aJ!1z21z8222zz8.

~B12!

APPENDIX C: SYMMETRY OF ORIENTATIONAL
CORRELATION FUNCTION

In this appendix, we give a brief discussion of the sy
metry of distribution functionPa(a I ,s I ;aJ ,sJ) for the ori-
entations of two molecules both of whose centers lie in
plane perpendicular to the directorn. We assume a nemati
phase with no long range biaxial order. Therefore, the o
vector needed to describe the nematic phase is the direcn
and we have invariance undern→2n. This distribution
function must be constructed from the available vectors
the problem, which we may take to be

ex,I8 , ez,I8 , ex,J8 , ez,J8 , R, n, ~C1!

whereR is the intermolecular displacement vector. Such
variants, to be consistent with the nematic phase should
involve cross products. Thus, we may utilize

~ex,I8 •ex,J8 !, ~ez,I8 •ez,J8 !, ~ez,I8 •n!, ~ez,J8 •n!, ~ex,I8 •R!,

~ex,J8 •R!, ~C2!
at

-

a

y
r

n

-
ot

where the nematic director is alongez . Since the expression
must be invariant under change of sign ofn, we cannot in-
voke the factorF[(ez,I8 •n)p(ez,J8 •n)q, with p1q odd. Also
note thatez,I8 and ez,J8 are both collinear ton. Therefore a
factor like F is equivalent to unity or (ez,I8 •ez,J8 ). Thus, we
may take our list of invariants to be

~ex,I8 •ex,J8 !, ~ez,I8 •ez,J8 !, ~ex,I8 •R!, ~ex,J8 •R!, ~C3!

which are, respectively

cos~a I2aJ!, s IsJ , ~Xcosa I1Ysina I !,

~XcosaJ1YsinaJ!. ~C4!

So we writePa as

Pa~a I ,s I ;aJ ,sJ!5 (
l mn

@A~R2! l mn1B~R2! l mns IsJ#

3cosl ~a I2aJ!~Xcosa I

1Ysina I !
m~XcosaJ1YsinaJ!

n ,

~C5!

where R25X21Y2 . One can see that this is an invaria
against rotation, by noting that rotation byp about thex axis
~which is the direction of the chiral wave vector! takesY into
2Y, and changes the signs of thea’s ands’s. Rotation byp
about thez axis changes the sign ofR and addsp to thea’s.
Now we set Y50. Using cos(aI2aJ)5cosaIcosaJ
1sinaIsinaJ and cos2a512sin2a, we can write the result in
the form

Pa~a I ,s I ;aJ ,sJ!

5 (
kl mn

@C~R2!kl mn1D~R2!kl mns IsJ#

3~sina I !
k~sinaJ!

l ~Xcosa I !
m~XcosaJ!

n ,

~C6!

wherek1l is restricted to be even. A symmetry we ha
not yet used is that moleculesI andJ are identical. Thus, we
have the symmetry operationR→2R and I andJ are inter-
changed. This tells us that

C~R2!kl mn5C~R2! l knm~21!m1n ,
~C7!

D~R2!kl mn5D~R2! l knm~21!m1n .

Now, consider the restriction imposed by requiring th
the constituent molecules actually be achiral. Let us supp
that the molecules have a mirror plane perpendicular to
body x axis. We can relate an arbitrary initial configuratio
shown in the left panel of Fig. 11 to the configuration w
obtain by a reflection takingey into 2ey , as shown in the
right-hand panel. This mirror operation, which changes
sign of cosaI and that of cosaJ , is supposed to leavePa
invariant. This implies that in Eq.~C6!, m1n must be even.
The conclusion is that for a nematic all of whose molecu
are identical, the orientation correlation function for mo
ecules in the same equatorial plane must be of the form
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Pa~a I ,s I ;aJ ,sJ!

5 (
jkmn

@C~R2!kl mn1D~R2!kl mns IsJ#

3~sina I !
k~sinaJ!

l ~cosa I !
m~cosaJ!

n ,

~C8!

wherek1l andm1n are even.
A similar discussion can be given for the case when

molecules are achiral by virtue of having a mirror plane p
pendicular toey8 or ez8 . In any case, we still arrive at th
additional constraint thatm1n is even. We could have base
the discussion on the vectorsey,I8 andey,J8 instead ofex,I8 and
ex,J8 . The construction of proper rotational invariants wou
then lead to the condition thatm1n be even. The additiona
constraint caused by requiring the constituent molecule
be achiral would then lead to the condition thatk1l be
even. So, the discussion given above can be extende
cover the most general case of a nematic, which perfo
must consist of achiral molecules.

APPENDIX D: OSCILLATORY DEPENDENCE
ON MOLECULAR LENGTH

In this appendix, we study the dependence of the tw
energyEIJ

(2) on the molecular lengthL. We will show that in
the limit of largeL, EIJ

(2) has significant end effects whic
cause itnot to be simply a function ofa12a2. To obtain
clear analytic results we will assume the polarizability to
isotropic ~d5h50! and will work within the expansion in
powers of the transverse coordinates. In other words, we
treat the helical molecule witha/R!1.

At first order in the transverse coordinate~a! we have@in
the notation of Eq.~B2!# that T5T1, where

T15ar2E
2L/2

L/2

dz1E
2L/2

L/2

dz2

z1sin~qz21aJ!2z2sin~qz11a I !

@R21~z12z2!2#4

~D1!

so that

T15T1a~cosaJ2cosa I !, ~D2!

FIG. 11. Left: orientation withs511 and nonzeroa. Right:
orientation after mirror operation takingey into 2ey .
e
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to
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e
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where

T1a5ar2E
2L/2

L/2

dz1E
2L/2

L/2

dz2

z1sin~qz2!

@R21~z12z2!2#4 . ~D3!

We do not pursue evaluation of this term any further beca
the a dependence of this result gives a vanishing contri
tion to ^E&, when it is averaged over an orientational pro
ability distribution consistent with nematic symmetry.

At second order ina we haveT5T2, where

T25Ra2r2E
2L/2

L/2

dz1E
2L/2

L/2

dz2

3
z1sin~qz21aJ!2z2sin~qz11a I !

@R21~z12z2!2#5 8@cos~qz11a I !

2cos~qz21aJ!#, ~D4!

so that

T25Ucos~a I2aJ!1Vcos~a I1aJ!1Wcos~2a I !

1Wcos~2aJ!, ~D5!

where

U58Ra2r2E
2L/2

L/2

s dsE
2L/2

L/2

dt
sin@q~ t2s!#

@R21~s2t !2#5

58Ra2r2E
2L/2

L/2

s dsG5~s![8Ra2r2u, ~D6!

V58Ra2r2E
2L/2

L/2

s dsE
2L/2

L/2

dt
sin@q~ t1s!#

@R21~s2t !2#5

58Ra2r2E
2L/2

L/2

s@cos~2qs!G5~s!1sin~2qs!H5~s!#ds

[8Ra2r2v, ~D7!

and

W524Ra2r2E
2L/2

L/2

dssin~2qs!@sF1~s!1F2~s!#

[4Ra2r2w, ~D8!

where

F1~s!5E
2L/22s

L/22s du

~R21u2!5 , ~D9!

F2~s!5E
2L/22s

L/22s u du

~R21u2!5 , ~D10!

Gp~s!5E
2L/22s

L/22s sinqt

~R21t2!p dt, ~D11!
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and

Hp~s!5E
2L/22s

L/22s cosqt

~R21t2!p dt. ~D12!

After considerable algebra, we obtained the following resu
for largeL/R:

u5J4~q!2R2J5~q!2 1
8 ~qL!I 4~q!, ~D13a!

v52~L/q!I 5~q!cos~qL!2 1
2 ~L/q!J5~q!sin~qL!1cos~qL!

3@2 1
8 J4~q!2q22J5~q!1~8qR8!21#

1sin~qL!@ 1
8 I 4~q!1q22I 5~q!#, ~D13b!

w5@2 1
2 C5R292 1

2 I 5~2q!#~L/q!cos~qL!2 1
2 J5~2q!

3~L/q!sin~qL!1cos~qL!F ~8qR8!212
1

2q2 J5~2q!G
1sin~qL!FC5~2q2R9!211

1

2q2 I 5~2q!G , ~D13c!

where

I p~q!5E
0

` cosqu

~R21u2!p du,

Jp~q!5E
0

` sinqu

~R21u2!p du, ~D14!
ty

s

tt

C

J

. E
s

Cp5E
0

` dx

~11x2!p .

The main approximation in our results is that integrals w
integrands as inI p andJp which have upper limitsL/2 or L
are replaced by the integrals written in Eq.~D14! with an
upper limit of `. One has the results

I 4~q!5
pq3e2qR

96R4
@116/~qR!115/~qR!2115/~qR!3#,

~D15!

I 5~q!5
pq4e2qR

768R5
@1110/~qR!145/~qR!21105/~qR!3

1105/~qR!4#, ~D16!

Jp~q!5
1

qR2p
@112p~qR!22112p~p11!~qR!241•••#,

~D17!

where the result forJp is an asymptotic expansion forqR
@1. We compared these results with exact numerical ev
ations ofEIJ

(2) and found very close agreement.
We see from Eq.~D13! that in the largeL limit, the quan-

tities V/L andW/L have oscillatory contributions, which ar
of the same order as the largeL limit of U/L.
ent

any
t of
ee
ror

of
@1# P. G. deGennes and J. Prost,The Physics of Liquid Crystals,
2nd ed.~Oxford University Press, New York, 1993!.

@2# W. Thomson,The Robert Boyle Lecture, Oxford Universi
Junior Scientific Club, May 16, 1893, reprinted inBaltimore
Lectures~C. J. Clay & Sons, London, 1904!.

@3# A. B. Harris, R. Kamien, and T. C. Lubensky, Rev. Mod. Phy
~to be published!.

@4# A. B. Harris, R. Kamien, and T. C. Lubensky, Phys. Rev. Le
78, 1476~1997!; and to be published.

@5# D. P. Craig, inOptical Activity and Chiral Discrimination,
edited by S. F. Mason~D. Reidel, New York, 1979!.

@6# L. Salem, X. Chapuisat, G. Segal, P. Hiberty, C. Minot,
Leforestier, and P. Sautet, J. Am. Chem. Soc.109, 2887
~1987!.

@7# B. W. Van der Meer, G. Vertogen, A. J. Dekker, and J. G.
Ypma, J. Chem. Phys.65, 3935~1976!.

@8# E. I. Kats, Sov. Phys. JETP47, 1205~1978!.
@9# S. A. Issaenko, A. B. Harris, and T. C. Lubensky, Phys. Rev
.

.

.

.

60, 578 ~1999!.
@10# S.A. Issaenko, thesis, University of Pennsylvania. Departm

of Physics~1998!.
@11# T.V. Samulsky and E. T. Samulsky, J. Chem. Phys.67, 824

~1977!.
@12# Y. H. Kim, J. Phys.~Paris! 43, 559 ~1982!.
@13# M. A. Osipov, J. Chem. Phys.96, 259 ~1985!.
@14# W. J. A. Goossens, Mol. Cryst. Liq. Cryst.12, 237 ~1971!.
@15# The principal axes can be defined as the principal axes of

second rank tensor, such as the polarizability or the momen
inertia. For simplicity, we consider the case when all thr
axes are distinct. Then, if the molecule is to have a mir
plane, such a mirror plane must be perpendicular to one
these principal axes.

@16# A. B. Harris, R. D. Kamien, and T.C. Lubensky~unpublished!.
@17# G. W. Gray and D. G. McDonnell, Mol. Cryst. Liq. Cryst.34,

211 ~1977!.


