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Microscopic calculations of the pitch of cholesteric liquid crystals are based on a few types of interactions
between molecules: (1) short-range repulsive, (2) direct Coulomb, and (3) long-range van der Waals inter-
actions. Recently, it was shown that first two types cannot be treated in the frame of mean-field approximation.
Here we show that, contrary to common belief, an accurate evaluation of the intermolecular dispersion forces
contributing to chiral ordering requires consideration of biaxial correlations between molecules which are
neglected in the mean-field approximation. We found that in the presence of biaxial correlations chiral inter-
actions depend very weakly on the anisotropy of the Idcal, atomi¢ polarizability. Instead, the chiral
interaction between two molecules is dominated by the character of biaxial correlations, the isotropic part of
local polarizability of one molecule, and a chiral parameter of the other molecule, which characterizes the
chiral molecular geometry and is similar to that found previously for steric interactions.

PACS numbd(s): 61.30.Cz

I. INTRODUCTION actions. In the situation we consider, the chiral wave vector
is a consequence of “turning on” chiral interactions in an
It is well known that liquids consisting of long rodlike otherwise nematic liquid crystal that has only short-range
molecules give rise to liquid crystalline phaddd. In the  biaxial order.
nematic liquid-crystal phase these elongated molecules are Up to now no consensus has been reached as to exactly
preferentially aligned along a symmetry axis specified by thevhich microscopic interaction between molecules dominates
unit vectorn, even though their centers of mass show noin producing the CLC phase. Among the interactions that
long-range order. In this paper, we wish to study the microhave been invoked af&]: (1) long-range attractive disper-
scopic interactions that give rise to the cholesteric liquidsion (van der Waalsinteractions,(2) short-range repulsive
crystal (CLC) phase, in which the local director(r) de- interactions whose origin is in the Pauli princigidso called

scribes a macroscopically helical structure with sterig, and (3) direct Coulomb interactions which usually
A . take the form of dipole—quadrupole interactions between
n(r)=k cosQx—j sin Qx, (1) electrically neutral mesogens. The latter two types can be

interpreted as central force interactions between pairs of at-
where the axis of the helical structugehich is perpendicu- oms or mass points on different molecules. Traditionally, the
lar to n) is arbitrarily assigned to thedirection andQ is the  direct Coulomb interactions are ignored and can be a subject
macroscopic chiral wave vector, defined so that a rightof future investigation. In contrast, the dispersion interaction
handed structure ha&3 positive. In physically realizable sys- is not equivalent to a classical two-body interaction. The
tems, the chiral pitchP=2#/Q, is much larger than the distinction between two-body and many-bo@ye., disper-
intermolecular separation, in which case this phase, althougéion interactions, is that two-body interactions are known
chiral on large length scales, is locally identical to a nematic[6] to give Q=0 when the orientation of each molecule is
We, therefore, will refer to this phase as the cholesteric nemindependently averaged over a distribution function that has
atic (CN) phase. It is known that one gets a CN phase if, andhe cylindrical symmetry of the nematic phase. In other
only if, some(or all) of the constituent molecules are chiral. words, within mean field theory, two-body interactions must
(A chiral molecule is one that cannot be rotated into its mir-give Q=0. Thus, for two-body interactions a nonzero value
ror image[2]. For a discussion of chiral molecular symmetry of Q can only be obtained when biaxial correlations between
see a recent revie{8].) The terminology CN emphasizes the neighboring nematogens are explicitly taken into account
fact that a meaningful calculation of the macroscopic chiral4]. In contrast, from the early calculations of van der Meer
wave vectorQ need only be carried out to leading order in et al.[7] and Kats[8] it is clear that dispersion interactions
the molecular chirality[4]. In particular, this implies that do give a nonzero value & even within mean-field theory.
long-range biaxial order, which is an inescapable conseThis has led, it seems, to the belief that for dispersion inter-
quence of chiral orderingsince the chiral wave vector actions it is not necessary to consider the role of orientational
breaks the symmetry in the plane perpendiculanjoneed correlations between molecules. In this paper, we show that
only be considered if one is dealing with a system that wouldhis is not the case.
have long-range biaxial order in the absence of chiral inter- Until recently, the calculationg7,8] have yielded formal

expressions that can hardly be used to obtain order of mag-

nitude estimates o). The resulting expressions f@ in-

*Electronic address: serguei@compstat.wharton.upenn.edu volved molecular polarizabilities, which were not easy to
TElectronic address: harris@harris.physics.upenn.edu estimate. In addition, the treatment was itself based on a

1063-651X/2000/6(B)/277715)/$15.00 PRE 61 2777 ©2000 The American Physical Society



2778 S. A. ISSAENKO AND A. B. HARRIS PRE 61

multipole expansion whose use is questionable when appliegction over thex’'s of the interacting molecules depends on
to elongated nematogenic molecules. To overcome these othe anisotropy of the polarizability, the-dependent part of
jections we 9] recently carried out a numerical evaluation of this interaction for typical values of the molecular param-
the cholesteric pitch resulting from van der Waals intermo-eters depends only weakly on the anisotropic part of the local
lecular interactions when, as was customary, biaxial correlapolarizability of the molecules. Therefore, we are led to con-
tions were neglected. We used a modification of the multisSider the case when the local polarizability is isotropic and
pole expansion in which only the transverse coordinate§onsequently that both the anisotropy of the polarizability
were treated perturbatively. This approach allowed us to tredi"d the gyrotropy vanish. It is then relevant to identify the
a system of elongated molecules with intermolecular SeloalraQarameters that determine the strength of the chiral intermo-

tion close to that observed in the real cholesteric. In thigecular interaction. As we shall see, the molecular chirality is

treatment, we also introduced a model in which the impor-described. not by the gyrotropy, but rather by a third rank

tant excited states that determine the dispersion interactiofy"S°" .S'm'l‘ir t(_)rr:hat e_ncounterefd r']n thel tr_eatt)q:gnthqf hstenc
werep states localized on each atomic site. It was found thatnteractmps[ h]. € anfl_scl)éropy IO the fpoharlzla} it Ic

the cholesteric pitch resulting from this model was usually""ppe"’lrS In the mean- I€ld analysis of chira mtergcblpas
much longer than that observed experimentally. A Sim"apow_repla}ced by _the_anlsqtropy a_lssoma_ted with biaxial cor-
evaluation was done numerically for poly-gamma-benzyl- relations in combination with the isotropic part of the polar-
glutamate(PBLG) diluted in dioxane[10]. This evaluation izability. In view of the importance of biaxial correlations we
showed that the cholesteric pitch arising from quantum interd1V€: in Appendix C, an analysis of the symmetry of these
actions treated within the mean-field approximation wag Vo molecule erentatlonal correlapon funcgons n t.he fully
about 20 times longer than that found experimentally. aligned nematic phase. We use this analysis to project out of

In this paper, on the basis of results obtained for the cLeevr calculationSa_-depender_lt contribufnions _to the energy
consisting of DNA-like molecules, we claim that, similar to which do not survive averaging over orientational correlation

short-range repulsive interactions, the contribution of disperfunc.tlonS consistent ki nematic symmetry.
Finally, we point out that a quantitative calculation of the

sion intermolecular forces to the chiral order cannot be

evaluated reliably when orientational correlations betweerﬁ:hpleSte“C p!tch of a system of he“ca} mplecules also re-
molecules are ignored. One illustration of this statement i§lUires a detailed knowledge of the distribution of the centers

provided by a treatment of a CLC consisting of ponmersOf neighboring molecules with respect to relative displace-
PBLG diluted in dioxang10], where it was shown that a ment along the local nematic director as well as the distribu-

consideration of intermolecular biaxial correlations can givelio" Of the lengths of constituent molecules. This implies that

the cholesteric pitch comparable to the experimentally opthereis no ur_1iversa|, one—siz'e fits all, theoretical explanation
served value. Thus, it is important for understanding Chiraforéh_eﬂrnaghr_utudes Of the Ch'Fa' (\;vavefv”ec@r In the foll
properties of PBLG liquid crystals to know the biaxial cor- _ BMefly, this paper is organized as follows. In the follow-

relations, which were traditionally disregarded in treatmentd"d section, we will cqn5|der the pairwise Interaction b.e-
of this CLC[11-13. tween molecules leading to the macroscopic chiral twist.

When the dispersion chiral interactions between two m0|_This interaction will be treated V\_/ithin second—order.pertprba—
ecules are considered in the mean field approximation, it wallon thepry. As we showgd preV|ou.d]9], macroscopic twist .
found [7,8] that the resulting effective chiral interaction ¢@" arsé from two_distinct phys_|cal me_chanlsms: one in
could be expressed in terms of polarizabilities characteristic/ hich both molecules are excne_d In t_he virual state of two—
of the molecule as a whole. In particular, this interaction"”OI_ecu".a system and a second in which only one mol.ecule IS
energy was found to be proportional to the anisotropic par?xc'ted_ in the virtual state. The lattter type of Interaction ap-
of polarizability of one molecule and a higher ordénird ~ P&ars important only in special cases since it requires the

rank tensor molecular polarizability, called the gyrotropy, Presence of local dipole moments arranged in the chiral order

which describes the chiral properties of the other molecule®” On€ of the molecules rather than gyrotropy, which is char-

In Ref. [9] it was shown that when the electrons are We"acteristic for atwo—moleculg term. These cases are treatgd in
localized on their atomic sites and within tpestate model, Secs. Il B a_nd e, respecnvgly. Finally, n S.e.c' i we list
the molecular polarizability can be expressed in terms of th .ur'conclusmns and briefly discuss the S|gn|f|cgnce qf our
local atomic polarizabilities and the molecular gyrotropy can!ndings. The symmetry of the two-molecule orientational
be expressed in terms of the local atomic polarizabilities an&orrelatlon_ function for a fully aligned nematic is discussed
the positions of the atoms within the molecule. In Appendix C.

When one goes beyond mean-field theory and takes biax-
ial correlations into account, the description in terms of local  |I. EXACT EVALUATION OF CHIRAL QUANTUM
atomic properties is again quite convenient. In addition, in INTERACTIONS
this case, it is necessary to consider the detailed behavior of
the chiral interaction as a function &4, which specifies the
angle through which moleculeis spun about its long axis. In this section, we analyze how van der Waals interac-
Our study of thea dependence of the interactions leads totions give rise to the macroscopic chiral wave vector of cho-
two main results. First, the-dependent part of this interac- lesteric liquid crystals. We assume that each molecule has a
tion is, in general, far larger than its average overd¢t®e In small enough polarizability that we need consider only pair-
this situation, it is obviously important to take account of thewise Coulomb interactions between molecules, which we
correlations between the's of the interacting molecules. treat quantum mechanically. Traditionally, the interaction
Our second result is that although the average of this interpotential between two molecules is expanded either with re-

A. Formulation
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FIG. 1. The space fixed axeg in a CN. Heres, is defined to lie
along the cholesteric wave vector. We show the arrangement of F|G. 2. The transformation of E(B) from the space-fixed to the
molecules in planes perpendiculardpat R,=0, X, X". The local  molecule-fixed axesg/, . This molecule has points labeldd B, C,
director lies in the plane & is denotede,(X). The axise,(X) is  andD on one of its sides and on the other side it has points labeled
such as to form the third member of a right-handed triad. For thee, F, G, andH, such that rotation by 180° aboet takes(A,B,C,D)
plane atX the axis e (X) is rotated through an anglg(R,)  into (F,EH,G). At the left we show the orientation of the molecule
=QR relative toe,(0). described byr=+1 anda and at the right we show the molecular

orientation for a molecule witlr=—1 andc.
spect to all coordinates of charges on each mol€dser,§
or with respect to only their transverse coordinates with arwheree,=e,(0). Thesecond coordinate system, shown in
assumption that molecules have elongated shf@d€]. In  Fig. 2, is defined by the principal axgk5] |, €, ande; |
our treatment, we will evaluate the potential of interactionemblazoned on thih molecule. Because we assume perfect
between molecules exactly, that is without making an expanalignment of the long axes, we have
sion with respect to any coordinates of the charges on a

molecule. This approach will require a numerical treatment e ,=0&,

of the problem, which in turn will necessitate a detailed

model of each molecular constituent of the CLC. For sim- €, =€ Cosy, + € sing, (3
plicity, in our treatment we consider only a CLC consisting

of identical chiral molecules, each of which has a helical eh:gl[ey cosy, — €, Sine, ].

shape. We will also assume the molecular wave functions to

be strongly localized to the individual atoms. This assump<ote that rotation about the body axig, takes o into
tion is valid in either of two scenarios. The first is if the _ ; ang rotation about the body axis takes @7 ,a,) into
bandwidth of the manifold of excited states is small COM-(_ ;. ,+ ). Finally, one has local axﬁ- for each atom
pared to their average energy relative to the ground statg.,, yqjeculel. Using the repeated index summation con-
The second is if states are strongly localized by inhomogeyaniion we write
neity. We will neglect thermal fluctuations assuming that ’

there is a perfect alignment of the molecules either parallel to " =0We’ (%)
or antiparallel to the local nematic directors in the system. pol  EprEvl

Thus it is necessary to specify a scalar varialtes=1,  \hereO is an orthogonal matrix and similarly for atojion

which tells which way the molecule points and an anglemoeleculeJ. Components of a vectar with respect to these
variable,a, which specifies the angle through which the mol-y/5rjous systems are defined by

ecule is spun about its long axis.

To carry out the calculations we will refer to three coor- r=r e =r'e =r"¢d" 5
dinate systems. In the space-fixed coordinate system, shown BORTRTR TRTR
in Fig. 1, we introduce an axig, which coincides with the  \We now consider the interaction between two molecules

cholesteric wave vectd® as in Eq.(1). Also we takee,(R)  andJin the CN, where moleculkis at the origin and mol-

to be the axis along which the long axes of the molecules aéculeJ is at displacemenR,;=R. Because the twist angle

R are perfectly aligned. The third local axisRtis chosen to  petween neighboring molecules is small, we will assume that
form a right-handed coordinate system. For srRall n(R,)  the properties of this system are the same as those of the
will be rotated through a small angig(R,) from its value at  |ocally identical nematic system. Within this assumption

Ry=0. Thus to first order iny we write [16], we refer all coordinates to the space-fixed axes that
R) = rotate slowly as a function dR, as shown in Fig. 1. Since
&(R) =&, the cholesteric wave vectd lies along the space-fixexl
axis, the long axis of moleculekis rotated with respect to
e/(R)=¢,+ ¥(Re,, 2) that of moleculd by a small angle/(R,) in the g,-€, plane.

The interaction Hamiltonian that arises from the Coulomb
interaction between thigh charge on moleculedenotedy; ,
&(R)=¢,—¥(Rye,, and its counterpang; on moleculeJ is given by
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aiq; of Eq. (12) we can write the energy of interaction between
Hiy= El ZJ Ror] (6)  two molecules giving the rise to their mutual twist leading to
el e 4 macroscopic chirality:

with ri;=r;—r;, wherer; is the coordinate of théth charge S
o_f r_noleculel relative to the cente_r of this molecule and E=—20(R) 2 2 E MM A Re{(O|Di]1|n,nJ)
similarly for r;. We now express; in terms of the space- i el jj’ed NNy En

fixed axes at moleculé:

LN

X(NiNy| €xap(R=Ti1) (1) Dy |0)}, (13
ri=Lr;-eg(Roles(Ry), (7
. where we only kept terms of order.
where the space fixed axesRy are related to those at the  The evaluation of the above expression leads to the con-
orgin as sideration of two different situations: the first when in the
virtual state {n;n;} both molecules are excitedtwo-
e5(Ry) =€5(0) = /(R €xap€a(0), ®)  molecule caseand the second when in the virtual state only

h is the full . . d to b . one molecule is excitebne-molecule cageThe application
wheree is the fully antisymmetric tensor, and, to be consis- ¢ 1o approximation of local wave functions in both limits

tent with Eq.(1), $(R,) =QR,. Since the systemis locally @ 4j1ows us to express the sum in E43) over excited states
nematic, we treat the coordindie;-e5(R)]=r; s asinthe ot the molecule(n,} in terms of a sum withi’' =i over the
untwisted nematic phase. Thus, we write excited state$ni}ile of each atom. Accordingly, results will
R—r;=D;;=[R—1};1,8,(0) — $:(Ry) €xag' ; s€(0), be expressed in terms of matrix elements within atoms or
’ (9) local complexes{Q]. In so doing, it is natural to assume that
the relevant excited state can be reached from the ground

so that state by matrix elements of the dipole moment operator. In
the numerical analyses below, we will consider only the con-
Dij=|R—r] tributions from the lowesp orbitals of electrons on a mol-

ecule.

- 2 .

=[R=rijlj—0= 2{ exap(R=1)a(r)) ghy=ot/(Ry) In order to calculate the macroscopic piteffrom E,; one
must perform an average over the orientations and relative

+0(yA)]"™ (10 . J

positions of the interacting molecules. Thus, we write
2@/P=h/K,, whereK, is the Frank twist constartt is the

where the subscript=0 means that the expression is evalu- . . :
P b prque field[4], which we write as

ated in the absence of cholesteric twist. Throughout the red
of this paper this limit will be implicit. After substitution of

Eq. (10) into Eq.(6) and expansion (Di}l with respect tay h= 1 Z f%da, f%dajf dRE;;(a,a;:R)
0 0

one finds - 20Q &7,

exap(R=T11)a(r})p XP(ay,01;a;5,05;R), (14)
IR—rij|®

1
Hi;= il =—— t ¥ (R))
13 % “ diq; |R_rij| P(Ry)

where P is the density of molecules & with orientation
+0(4?). (11)  specified bya; ando;, given that there is a molecule at the
origin with orientation specified by, and ;. When this
We now consider an evaluation of the interaction energyequation is applied to a helical molecule, we may omit ref-
between two molecules treatirig,, via perturbation theory. erence to ther's since moleculd is invariant under change
In the first-order perturbation theory, the interaction energyof sign of o, . In general, the average of E{4) is a difficult
is the ground-state expectation value of the Coulomb poterpne to perform. However, there is a number of simplifica-
tial between atoms on different molecules. We will not ana-ions, which are often made. For instance, within mean field
lyze this interaction in the present pap€Fhis interaction is  theory, one neglects the correlations between the orientations
equivalent to a classical interaction, which can be treated agf the two molecules. Thus, within mean-field theory we

described elsewheid]). Here, we obtain the chiral interac- yecoyple the densit into the orientational distribution
tion from H,; by evaluating the energy of interaction within ¢,tion p.(a,o) of each molecule
second-order perturbation theory, whereby o

|(H13)n, iny:00° P(ay,01;05,055R13)=yPa(@),0)Pal @y, 0 f(R),
(12) (15

EIJ:_EI

NNy E“|”J ,
where y is the number of nearest neighbors and the density
where the sums are over stateg) (|n;)) of moleculel (J)  of probability for location of moleculd, f(R,;) has most of
and the prime indicates exclusion of the term when bothts weight at R,;),=0 and at the average intermolecular
molecules are in their ground state. Heffg,,_is the energy  separation. Also in Eq(15) the symmetry of the nematic
(relative to the ground statef the state when moleculds phase implies that,(«, ,0)=(47) 1. In what follows the
andJ are in state$n;) and|n,), respectively. Then with help mean field average of Eq14) is denoted by ), so that
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Ei - TABLE I. “Default” values of parameters used in the numeri-
P=-27K, { <ﬁ y} , (16 cal evaluations. Only values used, which differ from those listed in
Q this table will be given.

where here and in the following we take the volume perR L q a N E a &7 K
molecule to be}=LR?, K,=10 "7 dyne and the number of 20A 200A 0.4 A" 75A 200 8evV 1A 02 0 10" dyne
nearest neighbors of a molecuje=6.
The main point of this paper is to discuss the effect on the
pitch of relaxing the mean-field constraint on the distribution (2)_ _ 4 -1 —1p
function. In that case, we need to know something about the Bl 2y(Roe ; 2 BiA0IDs i)
orientational distribution function. A simple ansatz is to as- o 3
sume that the position dependencefofcan be decoupled X(1pif vl exap(R=Ti)a(ry) gD °10),
from its dependence on molecular orientations. This depe
dence will be defined by the orientational distribution func
tion P (e, ,0/;a;5,0;). In the case of purely steric interac-
tions it was showr{4] that as long as the nematic order is
reasonably well developed, the pitch can be calculated b
convoluting the chiral contribution t&,; with the nematic
contributions toP,, . In other words, it suffices to replace the

19

r\/'vhere,u, andv label excitedp states of atomsandj, respec-
“tively. (These states are assumed to be the real spates
py», andp, referred to the local atomic axgs:or simplic-
ity, we will always assume thd; , j, is independent of lo-
¥ations ofi and | atomic sites on the corresponding mol-
ecules. The above matrix elements can be expressed as

orientational distribution function by its value when the mo- (O|F(R,ri,r )i, p;j,v)
lecular chirality has been turned off. We will invoke this .
approximation here. Accordingly, we need to know what the =(i,u|Ar{ |0)(],v|Ar],|O)

most general form is foP, in a nematic. This question is

addressed in Appendix C, where we show that in a nematic % 7 FRIL - 5), (20

the most general form for the distribution functidh, for o ar” =G = s

two molecules whose displacement is parallel to the twist hee by

wave vectorQ (in the limit when the long axes are perfectly where Ar; defines the location dff electron with respect to

aligned is the center of théth atom on thd molecule; is the expec-
tation value ofr; in the ground state, i.e., the center of the
atom associated with chargeln Appendix A, we derive the

P a ,o0;a;5,05)= 2 [C(R?)\ mnt D(R®),/mno103] expression forEl(Jz) as a function of the orientations of the
k/mn two interacting molecules.
X (sina,)X(sina;)” (cosy,)™(cosa )" For the purpose of numerical evaluation of the given in-

teraction we introduce helical molecules identical to those
(17) considered in Ref.9] where, unless otherwise specified, the
length of a moleculd., the molecule wave numbaey, the

wherek+/ andm+n are even. The constraint thiat- ~ is  radius of the molecular helia and other parameters are
even is a result of assuming all molecules to be identicald'VeN in Table I. The position components of ik atom in

while m+n being even is a consequence of nematic symme}Lhe molecule-fixed coordinate system are

try. It follows from these constraints that only that par&pj e N v —aci .
which is invariant when the signs of both egsnd cos; are zj=s;, X{ =acodqs), y; =asin(gs), (21)
changed survives the average over a nematic symmetry di§\7here thes=[—1+(i—1)/(N.—1)IL for i=1.2
tribution functionP, . Accordingly, the assumption of nem- =Lz (- 1)/N—1)] W
atic symmetry correlations indicates that we should replac
E,; by its component consistent with local nematic order:

N,, whereN, is the number of atoms in a molecule. With
ppropriate relabeling, the space-fixed locations of the atoms
may be taken to be

Ey—z[Eu(a .o a;,0)+Ey(m—a 0,7 ay,0)]. Xi=acoqz+a), yj=asinqz+a),

(18 z/L=—1+(i—1)/(N,~1). (22)

Finally we remark that, as follows from Appendix C, the This result displays explicitly the symmetry of the helix with

given replacement is redundant when the displacement bg&espect too;— — o corresponding to the twofold rotation

tween two molecules iR=(R,0,0) and their orientations are axis. (The orientational distribution functions are thus inde-

identical: ;= ;= 0. This fact will be used later. pendent of ther's.) The locally defined principal axes for the
ith atom are chosen in the way shown in Fig. 3. It is conve-
nient to write them as

B. Two-molecule term
In the limit when both molecules are excited in the virtual g=ecoqz+a)+esingz +a),
state of two molecules one finds the following contribution ]
into Eq. (13) € =—ec sin(qz+ ) +ec cogqz +a,)g—cagq,
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FIG. 3. Local atomic coordinate system, defined by the unit 02,75 : 3.55 } 3.’75 !
vectorse;’L, showing that the local excitgulstates define the orien- La(R(A))

tation of the local axes. Her&); is the unit vector tangent to the
helix, the unit normalg, lies along the radius of curvature, and the
binormal unit vectoe; is the third member of the triad of mutually
perpendicular unit vectors.

FIG. 4. Cholesteric pitch as a function of separativbetween
helical molecules. Results are for the parameter values of Table I.
The solid line is from an exact numerical evaluationEd§’ from
the present paper, as described in Appendix A. The dashed line is

, . from Ref.[9] and is based on the analytic expansion in powers of
€ =—e&caqsinqz+a)+ecaqcodqz+a)e,+ C(’23) transverse coordinates.

WhereC2:[1+ (aq)z)] -1 . Here’e(z’ is the tangent vector to of iSOtrOpiC pOIaI’izabiIity,5= 7’]:0 For this case, it is known
the helix, €/ is a unit vector along the radius of curvature, that within the multipole expansidv,8] or modified multi-
and € is the unit vector along the binormal or the third POI€ expansioii9], mean-field theory givegE,;)=0. How-
orthogonal direction. ever, we expect that Fh|s result doe_s not dgpenq on the va-
We will set the matrix elementgi,M|Ari’f#|0) and !Idlty of such expansions. Inde(%j, in conflrmau_on _of this
(/377,10 equal toa, 1 A and chascterz the ansor 953 O PUTErca) work g7 <0, Second 1 P&
ropy of the atomic polarizability through the relations depends on the intermolecular separation #¢0.2 and
1 1 _77=0. It .foIIows that the mo_dified multipole expansion of the
En/E=1+ §5+ 7, Ep/E=1+ 55— 7, interaction potential used in Rg0] is not accurate at very
small intermolecular distances. This expansion works well
down to a separatios35 A, which corresponds te 15% of
the molecule volume density approximately given by
(2a?)/(3R?). We now discuss how the cholesteric pitch
~2 um we found atR=18 A (volume density~60%) com-
whereE is the average excitation energy axigy”, z” label ~ pares with what one would expect in view of experiments.
the local principal axes of the atom. Within our assumptionOne must realize that at this separation the distance between
of constant matrix elements the parametéand » charac-  closest interacting atoms is only 3 A, that our molecules are
terize the anisotropy of the excitation energy and through itrery chiral instead of having only a few chiral centers, that
the anisotropy of the atomic polarizability. For a moleculeatomic polarizability we used is rather high and the Frank
with an anisotropic polarizability we will setE=8 eV, twist constant is rather low. Thus, our result should be com-
6=0.2, andn=0, so that the local polarizability tensor has its pared to the minimum observed pitch that is found to be at
largest component along the tangent to the helix, as onmost a fraction of a microfl]. So we expect that the dis-
would expect physically. persion interaction between molecules treated within the
First, we evaluate the dispersion interaction in the meanmean-field approximation can make a significant contribu-
field approximation with given Frank twist constdfj. Af- tion to the chiral order only in the very special cases.
ter finding E(2/Q from Appendix A we will average this Now let us estimate the role of biaxial correlations for the
ratio with respect to positions of nearest neighbors$ wiol- dispersion forces contributing into the chiral intermolecular
ecule, which are located at random on its equatorial circuminteractions. For this purpose, we will evaluate the energy of
ference of radiu®, as described in connection with E46).  chiral interactiorE(? as a function ofx, and«; for the case
As mentioned, we neglect any correlations between positionghenR is in the same direction &3, which we indicate by
of molecules and independently spin each of them. We rethe notationR1 1 Q. Figures %a) and 5b) show the value of
mark here that numerically spinning of the molecules alE,(JZ)/ZQ and its component, which is consistent with local
small separations should be performed very accurately, i.enematic ordefas defined in Eq(18)], respectively. On each
over a large number of molecular orientatiom$n its equa-  plot the Ith molecule has four different equatorial orienta-
torial plane. In evaluating(3)/Q, we first consider the case tions given bya,=0° 90°, 180°, and 270°, while thath

2
E/E=1-35, (24)
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0.5 three orders of magnitude larger than its average obtained by
spinning both molecules uniformly over all values®fThis
being the case, even small departures from a uniform distri-
bution can have a profound effect on the calculated value of
the macroscopic pitch. Clearly, we expect correlations be-
tween the orientations of adjacent molecules will be reflected
by nonuniformity in the distribution otv values. Thus, we
arrive at the situation that is similar to the one with central
force interaction between atoms on two molecules where for
the system to be chiral one has to invoke the intermolecular
biaxial correlations. For dispersion forces even though we
obtain nonzero chiral interactions within the mean-field ap-
proximation, the presence of biaxial correlations will in-
crease them significantly. Thus, we conclude that biaxial cor-
relations should always be taken into account.

E,”2Q (cV x A)

-0, 60 120 180 240 300 360 In Fig. 5, we plot results for two cases, one in which local
@ oy (degrees) polarizability of a molecule is anisotropi@=0.2,5=0) and
another for which the polarizability is isotropié=0,7=0).

0.5 Within the resolution of this figure one cannot distinguish

between these two results. In contrast to the results of van
der Meer and other¥—9] derived forE(2)/2Q in the mean-
field approximation, we find that the orientational depen-
dence ofEfJZ) is nearly independent of the anisotropic part of
the local polarizability of a molecule in the presence of
strong biaxial correlationgFrom the analysis of Appendix
VI, one can deduce that this statement cannot remain true
whena<R. Although in practical cases this limit is probably
not realized.

The fact that we can get a finite pitch even when the
polarizability is isotropic, raises a question as to what param-
eters set the scale for this interaction energy. As discussed in
Ref.[3], the scale for the chiral energy of interaction is set by
‘ ‘ ‘ the product of a chiral parameter of one molecule times some
0 60 120 180 240 300 360 achiral property, usually an anisotropy, of the second mol-

(b) 0y (degrees) ecule. Within the mean field treatment of interactions in
. _ . which E) is averaged ovew's, it is known[7-9] that E(®)

FIG. 5. The energy of interactioi{3’/2Q [panel @] and its  is proportional to the product of the molecular gyrotropy
component consistent with local nematic orfieanel(b)] as afunc- hich characterizes the molecular chirality in this deemed
tion of the equatorial rotation by angle, of the moleculeJ at e apisotropy of the polarizability. However, since these
different angles a; of molecule I: = ;=0%, @,=90%, @13 5 ameters are both zero whes 7=0, the a-dependent
=180°,¢|,=270°, where the index o& corresponds to the num- . - .

twist energy shown in Fig. 5 must be scaled by some differ-

ber of the curve, an®71Q. Each graph has two indistinguishable nt parameters. In order to identify appropriate barameters
curves representing interaction between molecules with anisotropig P ) fy approp P !

and isotropic polarizabilities, that is whed=0.2, »=0, and we p.resent an analysis -|n Append|x V for th_e C"&e”:o',
5=7=0, respectively. The rest of parameter values are as iVe find that now the chirality of a molecule is characterized

Table I. by the third-rank tensor componert;x;y; z{ , where these

) coordinates are taken relative to principal ak&S] of the
molecule is rotated through an angtg € [0°, 360]. (Note  molecule. Such a result is not surprising, because when the
that the presence of local peaks is defined by the details gfolarizability is isotropic, we are dealing with interactions
the molecule structure. As the density of atopnsr separa- that are not very different from steric interactions where just
tion between molecules increases these peaks are smoothik type of chiral parameter has been shown to be relevant
out). We see that at small intermolecular separaﬁﬁf’? is  [4,3]. The quantity analogous to the anisotropy of the polar-
dominated by its component consistent with local nematidzability is harder to identify unambiguously. Clearly, we are
order, though, as follows from Appendix V, this dominanceinvoking anisotropy due to biaxial correlations. Also, the re-
disappears as the separation between molecules increasest is proportional to the magnitude of the isotropic part of
and so symmetrization defined by Ed.8) becomes neces- the polarizability. So here these two factors, in combination,
sary. In Fig. 5, we observe that tlhedependent contribution play the role that the anisotropy of the polarizability plays in
to Eff)/(ZQ) has an amplitude of about 0.5/} . If this  the mean field result.
energy is independently averaged ougrand«;, as done in We should note an unexpected result shown by Fig. 5 and
mean-field theory, the result would be<20™ % eV A corre- ~ corroborated by the analytic analysis given in Appendix D
sponding to the cholesteric pitch14 um. In other words, for the limit a<R: even in the large. limit the energyE(2)
the angular dependent part of the interaction energy is aboig not simply a function of ¢;— a5). This energy contains

E,”2Q @V x A)

-05 r 1

-1.0
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FIG. 6. The energy of chiral interactidf{3/2QL between two R

moleculesl andJ (R11Q) versus their molecular length when FIG. 7. The energy of chiral interactidﬁsz)IZQL between two

;= =0 and the other parameters are in Table |, excepand 5100 1eq andJ (R, 11Q) versus displacemef, of the center of
p. The solid curve represents the two molecules with the wavey olecule along its local nematic director wheg=a,=0. The

— -1 i i — -1 \whi
nhum(?erq—l A" and linear density of atomg= 2'5_A while solid curve corresponds to the system with molecules of the length
the dashed curve represents the two molecules @itid.4 andp 509 g A while the dotted curve is for one with molecular length

— -1

=10A™%. 197.0 A. In both cases, the molecule wave number=s A~* and
the linear density of atoms js=2.5 A1, R, =20 A, and the other

terms proportional to cos{+a,) and to cos(a;)  Parameters are as in Table I.

+c0s(2v,). The appearance of such terms show that no mat-

ter how largeL is, end effects remain important. Y 27 .
Next we study the dependence of the chiral energy on the h=— 4’7TQQJ d¢ E|3(0,0;R, cosp,R, sing,0).
length L of the molecules. Figure 6 reveals the oscillatory 0 25)

behavior ofE(2/2QL versus the length. of identical mol-
ecules for two values of a molecule wave number: 0.4 and
1 A~! when their orientations are given by angles=a; (2) Second, we assume that although there is no long-
=0 andR=(R,0,0). The oscillations with the period pro- range biaxial order, there are strong pairwise biaxial correla-
portional to the molecular pitch reflect end effects and theions between molecules, which forces two molecules to
helical nature of the constituent molecules, as is analyzed ihave the same orientatioalative toR, while the rest of the
Appendix D. Figure 6 suggests thaf?) would have an os- Molecules are ignored. Equati¢iv) can be written as
cillatory dependence on the relative displacemBgtbe-
tween two molecules along their long axis. To confirm this, 1 o
we evaluated this energy as a functionRyfin Fig. 7 for the h=— —f dop E\;(d, ¢+ AR, cosp,R, sing,0),

. _ _ _ 4’7TQQ 0
special case when,=a;=0, R, =(R,,0,0), the molecule
wave numberq=1 A~!, and both molecules have the (26)
lengths 197 or 200.8 A. It follows that consideration of the
distribution function of the displacemeRt, will reduce the  where, for this caseA=0. Thus, here both molecules have
effect of oscillations inE{?) with respect to the lengths of their bodyx-axis parallel toR, .
two molecules. We remark that these results suggest that if (3) Finally, we consider strong pairwise biaxial correla-
one constructs a system in which, to high accuracy, the cortions (as in case 2, aboyesuch that Eq.(26) holds with
stituent molecules all have the same lengiththen varyinge ~ A=a/2. In this case the body axis of one molecule is par-
may cause a change of the sign of the torque fi2ld. allel to R, and that of the other is perpendicularRo .

To study the role of orientational correlations between The results for the torque field and cholesteric pitch as
molecules, we construct the torque fi¢4, h of the CLC as  functions of average separation between molecules appearing
given in Eg.(14). In evaluatingh we will assume that the in each of the above situations are depicted in Fig. 8. The
molecule at the origin hagneighbors at a displacement with graphs shown there represent the torque field of a CLC
z-component zero and magnitufe , but withx andy com-  formed by chiral molecules with local anisotropic polariz-
ponents random in direction. We estimate the effect of biaxability defined bys=0.2 and»=0. As expected, this torque
ial correlations by considering a few possible situations forfield is indistinguishable from that of a CLC formed by mol-
the biaxial correlations between molecules: ecules identical except with isotropic polarizabilitg= 7

(1) First we suppose that there is long-range biaxial order=0). The corresponding cholesteric pitch is shown when the
so that locally each molecule is perfectly oriented in its equaFrank twist constant is equal to 10 dyne. From Fig. 8, it
torial plane at fixed angles, = a;=0. Then the torque field may be seen that as the correlations among molecules in-
is given by crease, the cholesteric pitch significantly decreases. In addi-
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0.25 : ‘ C. One-molecule term
As was shown in Ref.9] a new type of interaction arises
0.20 if only one molecule is excited in the virtual state of two-
molecule system. In this case we derive the contribution to
2 Loos the energy of chiral interaction given by Ed.3):
0.15 —_
H ES
[ 1 ; -1
= T ER=-2¢(Rye X X X aiarki.vlar,|O)PE,
g_ 0.104 i'el ied v
|
T0.1 _ -3
0.05+ (?Dijlﬂ[exaﬁ(R_ri’)a(rj)ﬁDi/j]
+0.2 ” ”
los art, art, o
0.003 T 1 —hietir T h
20 32
(@ R(A)
+
vo1s C(1=J) |, (27)
T 04
0.014 4 where ®(1<J) designates the corresponding term when
moleculel is excited and moleculd is in its ground state,
2 and the summation over(i’) includes both the charges of
s " 2 the electrons and the nuclei, whose positions are taken in the
Z = ground state. The sum over both signs of charge within an
&, 0006+ rlo atom leads to the replacement
|
T2 qi—d- Vi, (28)
0.002 + 14
- 10 whered; is the dipole moment of atornand on the right-
hand side of this equation the inderow labels atoms rather
-0.002 - L . .o
20 2 28 32 than individual charges. Thus,
(b) R(A)
002 EP=—20(Roe? 2 2 Ki,vIAr JO)PE, d; i
Lo i up'v
001- | PPt Plexap(RTia(r)gD; ]
= 71 arj(’,uari”,,u. ar]’,périﬁr #/
g T2 ; ’ f=rrp =T
£ 135 &
) 0.00 1.5 qu
S -2
% - +<1>(|@J)]. (29
-0.01
To estimate these chiral interactions between molecules,
704 we again consider our model helical molecule. But now we
002 £ ‘ ‘ + attribute the local dipole moments of constant values to each
o 24 R(A) 28 R molecule and arrange them consistent with the local symme-
try:
FIG. 8. The torque fieldh as a function of the average intermo- dy=o[dycoggs+ a)—cdysin(gs+ a)
lecular distanc& in the cases, discussed in the text, wiignthere
is long-range biaxial order with=0 for all molecules(2) there are —caqdysin(qs+ a)],
strong pairwise biaxial correlations ang= «,= ¢, (3) there are (30)
strong pairwise biaxial correlations between molecules and _ .
=a,+ml2=¢. Each plot represents two indistinguishable curves dy=o[dysin(gs+a)+cdycodqsta)
for the two—molecule terms: one fé&=0.2,7=0, and the other for n i
5=0,7=0. The other parameters are as in Table I. caqdycosqsta)],

dZ: 0'|[ - Caq q,n"' CdZ”] .
tion, we see that the chiral interaction is very sensitive to the

details of the mutual biaxial orientations of molecules and, a§he detailed expression f(El(Jl) is given in Appendix A.
a consequence, their knowledge is essential for accuratdote that because?) involves two dipole moments on the
treatment of the problem. same molecule, it does not depend on how the dipoles on
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different molecules are correlated. We pick the macroscopic 1.0 ' ' '
and microscopic parameters of the system identical to thost

used in Sec. Il B with the number of local dipole moments

on each molecule equal to the number of atonié;=N, 06
=200, and the values of dipole momeits =ed, dy»=d,»

=0.

First, similarly to the previous section, we will numeri-
cally evaluate the magnitude of the macroscopic pitch,
within the scope of the mean field approximation. If mol- <
ecules are spun independently then it turns out that at higt & 024
volumetric density~50% (R= 20 A) the macroscopic pitch 5m=
is P=0.13 (a,/d)? wm. The resulting pitch is small enough
to be relevant. However, as for the two—molecule term, the
presence of biaxial correlations between molecules needs t
be evaluated. Fig. 9 shows the one—molecule term

0.2

120 eV x A)

)

d

0.6

E(M(a,/d)?/(2Q) and its component consistent with local o 60 20 18 20 300 360
nematic symmetry of CN, as defined by E@8). The two @ 0y (degrees)
moleculed andJ have locations such th&] 1 Q and thelth 0.6 : ; ;

molecule is rotated through the angtge [ 0°, 36(] for four
fixed orientations of théth molecule. As usual, we plot two
curves: one for the case when interacting molecules have
anisotropic polarizability given by=0.2, =0 and the other
when the molecules are isotropic wifix =0. We observe = 02
that at separation 20 A there is a noticeable difference be
tween two curves, which indicates a strong chiral interaction g

in the mean-field approximation leading to a small choles-.&
teric pitch. Nevertheless, the part of the energy of interaction §
that disappears when two molecules are independently spus | -02
has dominant contribution, which quickly becomes over- o
whelming as the intermolecular separation increases. The
last statement is illustrated by Fig. 10, which reveals the
one—molecule tern((a,/d)?/2Q with §=0.2, »=0 and

5=7=0 versus separatioR when R71Q and a,= a;=0. —06 0 120 150 240 300 360
There the difference between two curves quickly decrease: (b) o, (degrees)

as separation growths. Accordingly, one expects that disre-

gard of biaxial correlations between molecules leads to a FIG. 9. The energy of interactiofi{y’(a,/d)?/2Q [panel (a)]
significant overestimation of resulting cholesteric pitch. Itand its component consistent with local nematic ofganel(b)] as
follows that the anisotropy of the molecular polarizability & function of the equatorial rotatian, of the molecule) at different
and chirality of the dipole arrangement can be used in verngles @, of molecule I: a;;=0°, ;=90 a13=180% a4
rough estimation of the strength of chiral interaction at very=270°: Where the index of corresponds to the number of the
small separation between molecules. As separation increasg&ve: andR11Q. In panel(b) for clarity only graphs 1 and 2 are
the effective interaction becomes dominated by the isotropic/ %" the graphs 3 and 4 can be reconstructed by translation of the
part of the polarizability of one molecule, the chirality of the 9raPhS 1 and 2 by the angie,=180°, respectively. Parameters,
arrangement of the dipoles on the other and the biaxial corgxcept foré, are tal.(en as In T.able - .EaCh graph has two pare}”el
relations between given molecules. curves corresponding to the interaction of molecules with aniso-

T ) . tropic polarizability(thick line): §=0.2,»=0, and isotropic polariz-
Similar to two-molecule ternk;;’/2QL undergoes oscil- ability (thin line): =0,7=0.

lations [10] as the length of each molecule is varied. This

underlines the necessity of accurate knowledge of the energy )
E() versus the relative displacemeRy between molecules. Shape(patterned after DNAwe found that the magnitude of

Finally we point out that the cholesteric pitch rising from Cholesteric pitchP rising from dispersion interactions be-
one—molecule type of interaction is proportional to tWeen molgculgs gvaluated v_wthm the mean-field approxima-
(aa/d)2 (N, /Ng)?. Because both ratios usually tend to be tion (in which b|ax!al correlaﬂon; are neglecjdalit WIthO.ut
very small[in the above analysis we choshl{/N,)=1], any type of multipole expansiorfas used heretoforeis
we conclude that the considered interaction is significanghorter than found previously, but still is significantly longer

only in special cases and usually can be neglected. than we expect from experimental data.
(2) Going beyond the mean-field approximation, we ana-

lyzed the effect of intermolecular biaxial correlations. It was

found that, in contrast to the common belief, these correla-
Here we record our conclusions and put our work into thetions play a dominant role in the evaluation of the piteh

context of current research. arising from van der Waals interactions. In fact, the presence
(1) For CLC consisting of chiral molecules of helical of biaxial correlations may lead to an increase in the chiral

=04

IIl. CONCLUSION
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< ] APPENDIX A: EXACT CHIRAL TERMS

P

@/ To evaluate Eq(19) we need matrix elements of two
g quantities. These are

B 1 1

s ] Fl=—= (A1)
= IDyj|  [R—rijl

4]

and
FO=egl (R—1)-e,](r;-65]D;; . (A2)
018 22 26 3'0 34 We use
R (A)
(O,0F(R,ri,rpip,jv)
FIG. 10. The one—molecule ter&{})(a,/d)%/2Q whenR11Q v

and a;=a,;=0. The solid and dashed curves represent the cases =(0|(Ar;- € )]iw)(O|(Ar;-€ )|jv)(Vi-€, )
when 6=0.2, =0 and 6= =0, respectively. Other parameters are Y
as in Table 1. X(Vj-e, )F(R,ry,rj)

=aj(Vi-€, (V€ DF(R.1;.1))
interaction by a few orders of magnitude in comparison to an 5
effective interaction considered within the mean field ap- =az(F..ij)- (A3)
proximation.

(3) In the presence of biaxial correlations we also found
that for typical molecular paramete(ia which the transverse B
dimension of the molecule is not very small compared to the El(JZ): —Zw(RX)age"’iEj VE <F§L1v);ij <F§L23;ii (E,tE,) g
intermolecular separationthe chiral interaction between “ (A4)
molecules depends only very weakly on the anisotropic part
of the molecular polarizability. This result contrasts with the Then
known [7-9] fact that the chiral interaction when biaxial (1) \_r ,

: : . (F) =1, Ville,; V)]
correlations are neglected is proportional to product of an- prill Ko T
isotropy of the polarizability and the gyrotrogwhich itself 1
requires an anisotropic polarizabilityin the presence of bi- D — T
axial correlations the pitctP is determined by the chiral [RE+ri+ri—2R-ri+2R-rj=2r; 1]
geometry of the moleculetsimilarly to the case of steric ——[¢ . -V[€ - (R-r)]D; 3
interactions[4]) and the combined effect of biaxial correla- b 1727
tions and the isotropic part of the polarizability. :Difse{;l i'e{'j—3DifS[(R—rij)'€{,ﬁ il

(4) We also gavein Appendix Q an explicit construction T '
of the allowed form of the two-particle orientational distri- X[(R=rij)- € ;]. (AS)
bution function for achiral molecules in a fully aligned
uniaxial nematic. This analysis pinpoints the types of correNext,
lations that are allowed in the limit when molecular chiralit @) N1 .Y .. V. UD-3 .
is “turned off.” We suggest that it is useful to eIiminatey“:‘”;IJ> (€1 Vill€L.- VilDij exgl (R=1)- €]

In this notation

from consideration terms in the interaction energy, which do X[rj-egl}
not survive the average over the nematic symmetry distribu- , 3 ) 72
tion function, as we did in the results shown in Figs. 5 and 9. =[€.i- VilDij"exapl (RTi) - & ]{€] - €5+ 3D;

Since it now seems that both steric and quantum interactions
are crucially affected by biaxial correlations, we hope that
these correlations nematicswill be studied by simulation Thus
techniques.

(5) Our calculations can potentially be generalized in sev- (F)) =D *exasl —[€) i€, ][, €51+ 3D; 7€, ;-€,]
eral directions. For instance, our analysis can be applied to a

X[rj-egll€), ;- (rij—R) 1} (AB)

i -2
liquid crystal containing a mixture of chiral and achiral mol- X[ri-epll€] ;- (R=rij)]+3D;; T(R—1;)- €]
ecules. In addition, one can apply the approach used here to T e e & 1+3D 2 (R-r)-e e e
consider real chiral systems as was done elsewli®idor a (- €Il ] i e )€l d
CLC consisting of PBLG diluted in dioxane. We hope that X[(R—fij)'e',l,i)]—15Di]4[(R—fi)'ea][rj~e;;]

the current work will stimulate numerical simulations of , )
CLC’s with inclusion of van der Waals interactions. X[(R=rij)- € J[(R=ri;)- €, )]} (A7)
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For the helical molecule we may evaluate the above ex-
pressions using the explicit relations for the atomic positions (Ef32)>°‘<T>E 2 da'lf da;T(a 0y a;50;)
given in Eq.(22) and the local coordinate axes given in Eq. 7173
(23). In the notation of Eq(A3), we have XP(ay,0; a;5,0;). (B5)

azz E ard’ FQ. F@ E! Following the type of argument used in R@l] it can be
ROV il i shown that this expression does indeed vanish when no mol-
ecules are chiral. It is interesting to look at the lowest order
terms in the expansion dfT) in powers of the transverse
coordinatesx;, y;, Xj, and yJ The leading term in this
expansion is found by settlrigIl R%+ zizj . Then the first-

where ®(1<J) designates the corresponding term whenorder contribution tol is
moleculel is excited and moleculd is in its ground state.

E)=—2y(R,)e?

iy puy

+P(1ed)|, (A8)

T(l)(a|0'| Vg ,O'J):Al[0'|sinaJ_O'Jsina’|)+A2[O'JSina’J
APPENDIX B: ISOTROPIC ATOMIC POLARIZABILITY — ySiny ) + Agery 05Oy — COS)

In this appendix, we analyze the chiral energy when the +A,(cosy;— cosy)), (B6)
atomic polarizability is isotropic, so th&t,=E. Then,

where Ap=3;f(WA 4, where Ayj=(R%+z'7+2'%)?

/ i - _ 12 /2
Ef=y(Rye*a E- 12 E ([Vi-€,1[V;-€ID;") 4z'i72'’, and
(L) 5ryr 2 12 12\4 125,12/ 2 12 12y2
XExQﬁ{[V |][V ]][(R r)-e,]lr;- eﬂ]D,J3} fij =z xj[(R +z'f+z j) +247'7z j(R +z'i+z j)
(B1) +16z2'{z'1],

This can now be evaluated in the space-fixed coordinate sys,{Z)_gzrz ’ ’(R2+z’2+z’2)[(R2+z’2+z’2)2+4z’22’2
tem: where, for simplicity, we sé®=Re,:

(B7)
E@= y(R)e‘a’E" 12 z (ViuV;.,Di ) fD=2y/[(RP+2'?+2'H)*+242' 72/ (R?+ 2P +2'7)?
L +162'{2'{],
X(Vi Vi ulyjzi—yizj1Di; %)
=18y(R)e*a’E1T. B2 =827y z/(RP+z' I+ 2’ H[(RP+z'7+2'?)*+4z2'72'?].
We have(still in space-fixed coordinatgs As discussed in Appendix C, the distribution functiBrfor

nematics involves only net even powers of sines and cosines,
so that, a nonzero result fqT) can only result if chiral

12
18; % Djj ™ [—3Dij,uDij 5#VDIJ] contributions toP are included. Actually, this condition is
required, because it is clear that achiral molecules can have
X[—=15Djj, .Dij o(Yizj—Y;z) = (39, nonzero values of thé&'s. Traditionally, no consideration is
B 2 given to the role of chiral biaxial correlations as a mecha-
30,y7j)Dij ,Dijj + (3,421 = 39,¥1)Dj; D nism for cholesteric pitch, although these must be included
( _ D for a fully consistent calculatiof].

At second order in the transverse coordinates we evaluate
_ T with DZ=R?-2Rx;+2z>. Thereby, we find a second-
= —8(v.7. —v.7. ij i Aj J
iEj Dij"(¥jzi—Yiz)), (B3) order contribution tar of

WhereDiZj =(R—x;))2+y2+ Zizj and T®(a, ,0,;a;,0;)=B(0)cosy cosy;+ B,(o)sine, sina;

X=X/ cosy, — ay; siney, , +Bj3[cog2a)) +cog2a;) ]+ -,

(B8)
Yi=X{ sina, + oy cosy, , (B4) o _ _
where--- indicates terms that change sign when either both
2=0\2 sina’s change sign or when both ag@s change sign[These
1 (I

terms do not survive the average in E&5) when P has

First, we analyze this quantity for an arbitrary molecule,"®Matic symmetry.Also in Eq. (B8) =00, and

SinceT depends on the orientations of the two molecules, the
pitch is d_etermlned by the average©bver orientations. So By(0)= 16R2 X'z ’y,’oDo
we consider
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By(0)=—16RY, (B9)
i

Bsy(o)=— 8R% xy/z] oDy ',

whereD§=R?+2/?+2/?~207/z] . Note that these quanti-
ties which do survive the average of EH@®5) must vanish
for achiral molecules(Because of our choice of principal
axes[15], if a molecule is achiral, it has a mirror plane per-
pendicular to one of the principal axes directionSeneri-
cally, the nonvanishing of one or more sums in E89) is
equivalent to the nonvanishing af;x/yz/ . For instance,
for the “twisted H” molecule invoked in Refd.4] and[3]
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where the nematic director is alomg. Since the expression
must be invariant under change of signmfwe cannot in-
voke the factofF=(€;,-n)P(e; ;-n)9, with p+q odd. Also
note thate), ande; ; are both collinear tm. Therefore a
factor like F is equivalent to unity or & -e; ;). Thus, we
may take our list of invariants to be

(6 6a)s (€,°€), (&,"R), (g;R), (C3
which are, respectively

cod o —ay), 003, (Xcoxy +Ysing),

(Xcoswy+ Ysina;). (C9

So we writeP, as

one sees that the three two-fold rotation axes ensure that

B,(0)=B,(0)=0, butB;(o) is nonzero and is given by

B3(0’)=—8R% AT Y 2 2/ [ 10(R? + {2+ 7/ %)*

+80(R?+2z{*+2/%)%z/ °z/*+322{*z/*]. (B10)

One sees the appearance of the quangfty/z/ , which is
characteristic of a chiral moleculd].
For the helical molecule, we have

L/2

T=12ap?

L/2
dzf dz’D 8[sinqz+ )z’
—L/2 —L/2

—sin(qZ’ + ay)z], (B11)

wherep is the density of atomsp=N_/L) and
D2=R?-2Rg[coqqz+ a,)—cogqz + a;)]+ 2a?
—2a%c08qz—qz +a,—ay)+72+2'%?-227.

(B12)

APPENDIX C: SYMMETRY OF ORIENTATIONAL
CORRELATION FUNCTION

Po(a,00;a, ,oJ>=/Emn [A(R?) /mnt B(R?) /mn0 03]

x cos (a;— a;)(Xcoxy,
+Ysina,)™(Xcosw;+ Ysina;)",
(CH

where R?=X2+Y?. One can see that this is an invariant
against rotation, by noting that rotation lyabout thex axis
(which is the direction of the chiral wave vectaakesY into
—Y, and changes the signs of th&s ando’s. Rotation by
about thez axis changes the sign & and addsr to thea’s.
Now we set Y=0. Using cosf—aj)=Cc0syC0oxy;
+singsina; and coda=1—sirfa, we can write the result in
the form

Pu.la),00;a;5,0))

= 2 [C(Rmnt D(RO)k/myc107]
X (sina; )X(sina;)” (Xcosy,)M(Xcosx )",
(Co)

wherek+ /" is restricted to be even. A symmetry we have
notyet used is that moleculésandJ are identical. Thus, we

In this appendix, we give a brief discussion of the sym-paye the symmetry operatidd— —R andl andJ are inter-

metry of distribution functiorP ,(«, ,0; a;,0;) for the ori-

changed. This tells us that

entations of two molecules both of whose centers lie in a

plane perpendicular to the director We assume a nematic

phase with no long range biaxial order. Therefore, the only
vector needed to describe the nematic phase is the dinector

and we have invariance under——n. This distribution

C(Rz)k/mn: C(Rz)/knm( - 1)m+n )

2 2 m+n (07)
D(R)k/mn=D(R?) sknm(—1) -

function must be constructed from the available vectors in Now, consider the restriction imposed by requiring that
the problem, which we may take to be the constituent molecules actually be achiral. Let us suppose
that the molecules have a mirror plane perpendicular to the
body x axis. We can relate an arbitrary initial configuration,
shown in the left panel of Fig. 11 to the configuration we
whereR is the intermolecular displacement vector. Such in-obtain by a reflection taking, into —e,, as shown in the
variants, to be consistent with the nematic phase should naetght-hand panel. This mirror operation, which changes the
involve cross products. Thus, we may utilize sign of cosy and that of coa;, is supposed to leave,
invariant. This implies that in EqC6), m+n must be even.
The conclusion is that for a nematic all of whose molecules
are identical, the orientation correlation function for mol-
ecules in the same equatorial plane must be of the form

& €1, &3 €5 RN (Cy

(e;,re;(,J)' (eé,l'eé,J): (eé,l'n)v (eé,J'n), (e;(,I'R):
(€4 R), (C2
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L2 L2 zlsin(qzz)
T,,=a Zf dz f dz,——————. (D3
la=ap 2 Hoie IR+ (z3—2p)%]° ©3)

We do not pursue evaluation of this term any further because
the o dependence of this result gives a vanishing contribu-
tion to (E), when it is averaged over an orientational prob-
ability distribution consistent with nematic symmetry.

At second order ira we haveT=T,, where

L/2 L/2
T2=Ra2p2f dzlf d22
—L/2 —L/2

e where
X
\ , %/
A ]
N, A
E' eX ' i
z : e ez
z
]
1
1 L-» ¢
B y
: B
w ) y
1 [}
¢ o ' L7,
/ - ;-0
| 4 Mirror ’
e Plane e
X X

FIG. 11. Left: orientation witho=+1 and nonzerar. Right:
orientation after mirror operation takirg into —e, .

Pola,00;a;5,0;)

= > [C(RY)k/mnt D(R) i mno 5]

jkmn

X (sina;)X(sina;)” (cosy,)M(cosa;)",

z;siN(Qzy + @y) — 2,8iN(qz; + @)
[R°+(z,—-2,)°]°

8[codqz; + «))
—cogqz+ay)], (D4)
so that

T,=Ucod a,— aj)+Vcog a,+ aj) + Wcog 2a,)

+Wocog2a;), (D5)
(C8)
where
wherek+/ andm+n are even.
A similar discussion can be given for the case when the L/2 L/2 sifq(t—s)]
molecules are achiral by virtue of having a mirror plane per- U=8R f uzs f LOREE (s— 078

pendicular tog; or €;. In any case, we still arrive at the

additional constraint thah+ n is even. We could have based
the discussion on the vectoe$, ande; ; instead ofe, , and

€ ;. The construction of proper rotational invariants would
then lead to the condition that+n be even. The additional

L/2
=8Ra2pzf s dsGy(s)=8Ra%p?u, (D6)
—L/2

constraint caused by requiring the constituent molecules to \y—gr g2 fuz sd fuz sinq(t+s)]

be achiral would then lead to the condition that /" be

L2 L2 R2+(S t)?]°

even. So, the discussion given above can be extended to L
cover the most general case of a nematic, which perforce =8Ra2p2f s[cog2qs)Gx(s) +sin(2qs)Hs(s) ]ds
—L/2

must consist of achiral molecules.

APPENDIX D: OSCILLATORY DEPENDENCE
ON MOLECULAR LENGTH

=8Ra&’p%v, (D7)

and

In this appendix, we study the dependence of the twist

energyEfJZ) on the molecular length. We will show that in
the limit of largeL, E{?) has significant end effects which
cause itnot to be simply a function ofx;— «,. To obtain
clear analytic results we will assume the polarizability to be
isotropic (6=#%=0) and will work within the expansion in

W= —4Ra2p2ff:zlzdssin(qu)[sFl(S)+Fz(S)]

powers of the transverse coordinates. In other words, we wilvhere

treat the helical molecule wita/R<1.
At first order in the transverse coordind® we havelin
the notation of Eq(B2)] that T=T;,, where

T Zf'-/z q j'—’z z;SiN(qz+ ay) = 2,8iN(Qz; + a)
=a Z Z
A L P [R*+(z:-2)%]"

(D1)

so that

T,=Ta(CcOSx;—COXy)), (D2)

=4Ra%p?w, (D8)
L/2—-s du
S 9
L/2—-s u du
R (P10
G f L D11
S)= t,
N PN (01D
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and = dx
S
Li2-s  cogyt P 0 (1+X )p
H,(s)= —s———5dt. D12
plS) —Li2-s(RE+19)P (b12

The main approximation in our results is that integrals with
After considerable algebra, we obtained the following resultgntegrands as i, andJ, which have upper limit&./2 or L

for largeL/R: are replaced by the integrals written in Ef14) with an
upper limit ofec. One has the results

u=J,4(q) —R?Js5(q) — 5(qL)1 4(q), (D133

30— QR
v=—(L/g)ls(q)cogqL)—3(L/q)Js(q)sin(qL)+cogqL) I4(q)=%[Pr6/(qR)+15/(qR)2+15/(qR)3],
X[—5da(a)—q~?Js(q) +(8qR%) 1] (D15)
+sin(qL)[514(@)+q~%1s(a)], (D13b 4.—qR
mq e

= 2 3
w=[~ $CaR"°~ 315(2a)](L/q)cog L) ~ }Js(20) 'S ggee [T IOMARTASIARTHA0SAR)

1 4
><(L/q)sin(qL)+cos(qL)[(8qR8)1— Z—qZJS(Zq)} +105(aR)7], (D16)

+sin(qL)[c5(2q2R9)1+ Ziqzls(Zq)}, (D130 Jp(aQ)= [1+2p(qR) "2+ 12p(p+1)(qR) " *+---],

qR?P
(D17)
where
= coglu where the result fod, is an asymptotic expansion_ forR
lp(q)= z—zde, >1. We compared these results with exact numerical evalu-
o (R%+u”) ations ofE(3) and found very close agreement.
. We see from Eq(D13) that in the largd. limit, the quan-
1.(q)= Joc szlnquz du (D14)  titiesV/L andW/L have oscillatory contributions, which are
P o (R*+u%)P of the same order as the largdimit of U/L.
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